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Abstract
LPCNet neural vocoder and its variants have shown the abil-
ity to synthesize high-quality speech in small footprint by ex-
ploiting domain knowledge in speech. In this paper, we intro-
duce subband linear prediction in LPCNet for producing high
fidelity speech more efficiently with consideration of subband
correlation. Speech is decomposed into multiple subband sig-
nals with linear prediction to reduce the complexity of neural
vocoder. A novel subband-based autoregressive model is pro-
posed to learn the joint distribution of the subband sequences
by introducing a reasonable assumption, which keeps the de-
pendence between subbands while accelerating the inference
speed. Based upon the human auditory perception sensitivity to
the harmonic speech components in the baseband, we allocate
more computational resources to model the low-frequency sub-
band to synthesize natural phase and magnitude of the synthe-
sized speech. Both objective and subjective tests show the pro-
posed subband LPCNet neural vocoder can synthesize higher
quality speech than the original fullband one (MOS 4.62 vs.
4.54), at a rate nearly three times faster.

Index Terms: subband LPCNet, neural vocoder, speech syn-
thesis, subband linear prediction, multirate signal processing

1. Introduction
Deep generative models have been successfully applied to the
text-to-speech system and improved the quality of synthesized
speech towards human parity. The typical neural vocoders, such
as WaveNet[1], WaveRNN[2] , and WaveGlow[3], can produce
high-fidelity speech by using kinds of generative neural models.
However, it is still a challenging task for real-time synthesis on
the servers and devices with a typical configuration.

WaveNet can deliver natural and high-fidelity speech with
the autoregressive generative model. Nonetheless, the inference
speed is much slower than real-time synthesis due to the se-
quential generation mechanism. Parallel WaveNet[4] and the
ClariNet[5] make the inference in parallel through the distil-
lation from a pre-trained teacher WaveNet. But it is diffi-
cult to implement and deploy due to the complicated training
pipeline. Besides, it requires the GPU with high computational
performance for real-time synthesis because the total compu-
tational complexity of generation is not reduced. WaveGlow
directly optimizes the likelihood of latent variables with bipar-
tite flows, which is simple to implement and train. But it re-
quires much more parameters than WaveNet to reach compara-
ble quality. WaveRNN improves the inference efficiency of the
recurrent network by a series of techniques of compression and
generation. Moreover, it also shows the robustness in several
scenarios[6, 7]. But the synthesis quality degrades as the model
size decreases[8].

Some recent works have improved the performance of neu-
ral vocoder by introducing linear prediction (LP) analysis. Lin-
ear prediction analysis decouples the speech into the spectral

envelope and the excitation signal, which makes it simpler to
predict the excitation distribution instead of speech. Based
on the source-filter model, some neural vocoders can get nat-
ural speech with smaller model and higher efficiency, such
as LPCNet[8], LP-WaveNet[9], neural source-filter model[10],
and glottal neural vocoders[11, 12, 13, 14]. Specifically, the
LPCNet vocoder achieves higher quality than WaveRNN for
quite small model size. An improvement of the LPCNet, the
iLPCNet[15] presents a closed-loop solution for the excitation
and spectral modeling and further improves the synthesis qual-
ity with 16-bit linear PCM.

The multirate signal processing can also make a significant
contribution to improve the inference efficiency by decompos-
ing the speech into the subband domain. The advantages of
performing speech generation in the subband domain include:
1. The length of each subband is much shorter than fullband
speech by down sampling, which reduces the complexity and
improves the efficiency. 2. Subband decomposition facilitates
the manipulation of each subband based upon the human au-
ditory perception sensitivity. Some related works have inves-
tigated the neural vocoders in the subband domain, such as
subband WaveNet[16, 17, 18], subband FFTNet[19], subband
WaveRNN[20], FeatherWave[21], and multiband MelGan[22].
To produce the subband sequences simultaneously, most of
these works take the independence of each subband signal as
a default assumption. However, such an assumption will lead to
the mismatch between training and inference, which affects the
final quality of output speech.

To further improve the synthesis efficiency and quality, we
propose the subband LPCNet, a high-fidelity neural vocoder by
the combination of series of speech domain knowledge, e.g.
multirate signal processing, linear prediction analysis, and hu-
man auditory perception. First, the speech signal is decomposed
into four subband signals through the analysis filter banks.
A novel subband-based autoregressive model is proposed to
model the joint distribution of the subband sequences with con-
sideration of the subband correlation. Furthermore, the exci-
tation signal is extracted by leveraging linear prediction analy-
sis in the baseband, which makes a significant contribution to
the human auditory perception of synthesized speech. Inspired
from speech coding[23], we allocate more computational re-
sources to the baseband module of the neural vocoder. The
proposed neural vocoder takes the acoustic feature as condition
and generates the subband samples simultaneously without the
mismatch between training and inference. Finally, the fullband
synthesized speech is reconstructed from the generated subband
samples through the synthesis filter banks.

This paper is organized as follows. Section 2 introduces
a novel subband-based autoregressive model for speech gener-
ation. Section 3 presents the structure of the proposed neural
vocoder, which is followed by the evaluation results in Section
4. Finally, we draw the conclusions in Section 5.
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2. Subband-based autoregressive model
The WaveNet vocoder models the probability distribution of the
speech sequence p(x;h) conditioned on the product of the his-
tory sequence distribution, given acoustic features h, as:

p(x;h) =

T∏

t=1

p(xt|x<t;h). (1)

In a multirate system, the speech is decomposed into several
subband streams through analysis filter banks and reconstructed
by synthesis filter banks. The autoregressive model of time do-
main can also be expended in the subband domain, as:

p(X;h) =

K∏

k=1

p(x1,k, x2,k, x3,k, x4,k|X•,<k;h), (2)

where X ∈ R
D×K represents the matrix composed of the sub-

band sequences. D is the decimate rate and K is the sequence
length of each subband. Without loss of generality, let D = 4
here. X•,<k = [x1,<k,x2,<k,x3,<k,x4,<k] represents the
submatrix of X before the kth column. xi,k denotes the kth

sample of the ith subband sequence. xi,<k denotes all the sam-
ples before the kth one in the ith subband sequence. The first
subband is the lowest frequency band.

Previous works take the sampling of each subband distribu-
tion separately during inference, which takes the independence
of all the subband distributions as a default assumption. How-
ever, all of the subband signals are highly correlated with each
other[24]. The independent assumption will lead to a phase mis-
match on the boundary between the neighbor subbands[16].

In this paper, we address that the joint distribution of
the subband sequence is conditioned on the lower frequency
band. By introducing such an assumption, the joint distribution
p(x1,k, x2,k, x3,k, x4,k) can be decomposed as:

p(x1,k, x2,k, x3,k, x4,k) = p(x1,k)p(x2,k|x1,k)

p(x3,k|x1,k, x2,k)p(x4,k|x1,k, x2,k, x3,k).
(3)

Let y1,k, y2,k−1, y3,k−2, and y4,k−3 denote the history
conditional samples of corresponding subband, respectively:

y1,k = x1,<k,

y2,k−1 = [x1,k−1, x2,<k−1],

y3,k−2 = [x1,k−2, x2,<k−2, x3,<k−2],

y4,k−3 = [x1,k−3, x2,k−3, x3,k−3, x4,<k−3].

(4)

Substitute Eq.(3) into Eq.(2), the subband autoregressive
model is:

p(X;h) =

K+3∏

k=1

p(x1,k|y1,k;h)p(x2,k−1|y2,k−1;h)

p(x3,k−2|y3,k−2;h)p(x4,k−3|y4,k−3;h).

(5)

Fig. 1 shows the corresponding probabilistic graph of
the subband sequences. The probability distribution of sub-
band samples p(x1,k), p(x2,k−1), p(x3,k−2) and p(x4,k−3)
(the light green nodes) are coherently independent given x1,<k,
x2,<k−1, x3,<k−2, and x4,<k−3 (the dark blue nodes). So that
the predicted distribution of each subband signal can be sam-
pled separately to improve both the inference efficiency and
precision without the mismatch. Notice that the subband gen-
erative model predicts the subband sequence by a few samples
delay. It is necessary to compensate for the corresponding de-
lay in each subband before the reconstruction through synthesis
filter banks.
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Figure 1: The probabilistic graph of subband sequences. Each
node corresponds one subband sample. The arrow lines in-
dicate the dependency among the sequences. The light green
nodes are independent given the dark blue nodes.
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Figure 2: Block diagram of analysis and synthesis stage of sig-
nal processing.

3. Proposed neural vocoder
The proposed neural vocoder consists of two modules: the sig-
nal processing and the neural network modules. The signal pro-
cessing module can reduce the complexity of neural module by
signal processing, including acoustic feature extraction, multi-
rate signal processing and linear prediction analysis. The neu-
ral network module learns the distribution of subband samples
conditioned on the acoustic features and generate the subband
sequence autoregressively.

3.1. Signal processing module

Fig. 2 shows the block diagram of analysis and synthesis.
Firstly, the Bark-scale frequency cepstral coefficients (BFCC),
Log-scale F0 and pitch correlation are extracted from the full-
band speech as acoustic features. An efficient method is intro-
duced to design the analysis and synthesis filter banks for mul-
tirate signal processing[25]. In the training stage, the speech
is decomposed into four equal bandwidth subbands in linear
frequency through the analysis filter banks. The subband se-
quences are rearranged according to Eq.(5). Then linear pre-
diction analysis is leveraged to extract the linear spectral pair
(LSP) features and the excitation signals in the first subband.
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In synthesis, the subband distribution is predicted by the
neural module conditioned on the acoustic features. After au-
toregressive sampling, the first subband excitation and other
subband samples are generated. The LP coefficients of the first
subband is calculated from the LSP features. Then the first
subband samples are generated by passing the excitation signal
through the LP synthesis filter. Finally, the fullband synthesized
speech is reconstructed through the synthesis filter banks. The
linear prediction in the first subband is as follows:

x1,k = e1,k + p1,k,

p1,k =

M∑

i=1

ai x1,k−i,
(6)

where x1,k, e1,k, and p1,k denote the subband signal, the exci-
tation signal and the linear prediction of the first subband, re-
spectively. ai denotes the ith LP coefficients with the order M .

3.2. Neural network module

The neural network module consists of two networks at two
rates, i.e., frame and sample rates, as Fig. 3 shows. The frame
rate network processes the acoustic features as condition and
upsamples them then sends the results to the sample rate net-
work. Firstly, F0 is linearly quantized to 256 discrete levels,
passed through an embedding layer then concatenated with the
acoustic features. A two-layer convolutional neural network is
adopted to construct the context information across the adja-
cent five frames. After one residual connection and one fully
connected (FC) layer, the three FC layers transform the context
vector as the input of three recurrent units in sample rate net-
work. We expect these three conditions will focus on different
necessary information to model corresponding subbands.

The sample rate network takes the three outputs of the
frame rate network as condition and models the distribution
of all subband samples. All the subband samples are quan-
tized to 8-bit with μ-law compression and share one em-
bedding layer. Because they are all waveforms in the same
sampling rate with the same physical meaning. Conditioned
by the frame rate network, a gated recurrent unit (GRUa) is
shared by four subband samples at previous timestep x·,k−1 =
[x1,k−1, x2,k−2, x3,k−3, x4,k−4]. After GRUa, two smaller
recurrent units (GRUb and GRUc) learn the distribution of the
first subband and the other three subbands. GRUb takes the
excitation sample at previous timestep e1,k−1 as an additional
condition. Based upon the human auditory perception sensitiv-
ity of the baseband, the first subband contributes more to the
phase consistance and formant shape than other three subbands.
So we pay more attention to the first subband quality and allo-
cate more computational resources to it. To further improve the
precision, logistic mixture density network (MDN) is utilized to
learn the distribution of the excitation signal in the first subband.
Besides, MDN with linear prediction presents a closed-loop so-
lution to model the excitation and the subband samples in the
first subband[15]. The loss function is the non-negative log-
likelyhood (NLL) for the first subband and the cross entropy
(CE) for the other three subbands. The MDN parameters and
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Figure 3: Block diagram of the neural network module of pro-
posed neural vocoder.

the loss function are shown as follows:

p(ê1,k) =
N∑

i=1

ωe
k,ilogistic(μ

e
k,i, s

e
k,i),

L = Lnll + λLce,

Lnll = −log p(ê1,k),

Lce = −
4∑

i=2

p(xi,k−i+1)log p(x̂i,k−i+1),

(7)

where ωe
k,i, μ

e
k,i and sek,i denote the ith mixture parmeters (pro-

portion, mean and variance) of the first subband excitation sig-
nal, respectively. N is the mixture number. logistic() denotes
the logistic distribution function. L is the loss function. Lnll

is the NLL loss and Lce is the CE loss. λ is a factor that con-
trols the balance between the first subband and the other three
subbands.

In synthesis, the neural network module takes the acoustic
features as the condition and predicts the subband samples at
each timestep autoregressively. Specifically, the first subband
sample is generated by adding the excitation to the linear pre-
diction as Eq.(6).

4. Experiments
We perform the experiments on the analysis-by-synthesis sam-
ples, and evaluate them by both the objective and subjective
tests. The computational cost of the proposed subband LPC-
Net is also calculated and compared with the original fullband
LPCNet vocoder at the sampling rate of 24kHz.
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Table 1: Acoustic features and dimension.

Feature name Dimension

BFCC 20
Log-scale F0 1
Pitch correlation 1
LSP 8
LPC 8

4.1. Database and setup

The experiments are performed on a database which consists of
over 11,000 sentences for approximately 12 hours recordings
by a professional US female speaker. We chose 10,000, 500,
and 500 utterances as training, validation, and test sets, respec-
tively. The speech signals are sampled at 24kHz with 16-bit
linear PCM.

A pre-emphasis filter is applied before the analysis filter
banks and the fullband speech is reconstructed with a matched
de-emphasis filter after the synthesis filter banks. The acous-
tic features for the neural module are BFCC, F0, pitch corre-
lation and LSP feautures. The first three acoustic features are
extracted from the fullband speech, and the LSP features and
corresponding LPC features are extracted from the first sub-
band signal. The dimension of each acoustic feature is listed
in Table 1. The frameshift of acoustic features is 10ms (240
samples). The noise injection and the sparsity of recurrent units
are as same as the original fullband LPCNet setup[8].

4.2. Neural module and the complexity

The dimension of GRUa, GRUb, and GRUc in the sample rate
network are 384, 16, and 16, respectively. The dimension of
FC layers is set to 128. The convolutional layers in the frame
rate network have 1× 3 kernels and 128 channels. The weight-
ing factor λ in the loss function is set to 0.5. In training stage,
the proposed neural vocoder is trained on a GPU cluster with
4 GPUs. The Adam optimizer is adopted and initialized with a
learning rate of 0.001. The mini-batch size is 32 and the training
iteration is 120 epochs.

The number of weights in the framework rate network Wf

and sample rate network Ws are:

Wf = 2NconvNac + 4N2
fc,

Ws = 3(dN2
a +Na(Nb +Nc) +NbL+NcQ),

(8)

where Na = 384, Nb = 16, and Nc = 16 denote the size of
GRUa, GRUb, and GRUc, respectively. d = 0.1 is the density
of the sparse GRU, Q = 256 is the quantization level, and L =
10 is the mixture number of MDN. Nconv = 128 and Nfc =
128 are the dimension of the convolutional layer and the FC
layer. Nac = 30 is the dimension of the acoustic feauture.

We leverage float-point operations per second (FLOPS) as a
measurement of the total complexity of neural vocoders, which
shows the float-point operations required to synthesize one sec-
ond speech waveform. The total complexity of the proposed
subband LPCNet is about 1.2 GFLOPS. And the complexity
of the original fullband LPCNet is around 3.5 GFLOPS. As
a comparison, the total complexity of fullband WaveRNN and
WaveNet vocoder is 10 GFLOPS and 100 GFLOPS[26] approx-
imately. The proposed subband LPCNet is nearly three times
faster than the original fullband LPCNet, which makes it prac-
tical and effective to deploy.

Table 2: The results of the objective and subjective tests.

Voice name LSD(dB) MCD(dB) MOS

Recording − − 4.73 ± 0.05
Subband LPCNet(w/) 7.52 3.03 4.62 ± 0.05
Subband LPCNet(w/o) 7.56 3.21 4.60 ± 0.05
Fullband LPCNet 7.85 4.03 4.54 ± 0.05

4.3. Evaluations

The original fullband LPCNet vocoder is chosen to compare
with the proposed neural vocoder (subband LPCNet w/). Be-
sides, a neural vocoder with the same structure as the proposed
vocoder (subband LPCNet w/o) is also included in the experi-
ments as a comparison. The only difference is that the subband
LPCNet vocoder leverages the proposed subband-based genera-
tive model and the other one still takes the independent assump-
tion among all the subbands. All test samples of synthesized
speech are generated through the analysis-by-synthesis process.
Some test samples are available at the following link1.

To objetively measure the performance of the proposed neu-
ral vocoder, we computed both the logarithm spectral distance
(LSD) and the Mel-cepstral distortion (MCD) between the nat-
ural recordings and the test samples. The results of objective
tests are shown in Table 2. It can be observed that the proposed
subband LPCNet(w/) outperforms the other two vocoders in the
measurement of LSD and MCD.

We also evaluated the perceptual quality of the proposed
neural vocoder by a subjective mean opinion score (MOS) test.
In the test, 50 utterances are randomly selected from the evalu-
ation set and 20 listeners are asked to give a natural score from
1 (Bad) to 5 (Excellent) of a perceived sample. The MOS test
result in Table 2 shows that the proposed subband LPCNet with
the subband-based autoregressive model gets the highest score
in the three tested vocoders. The neural vocoder with the in-
dependent assumption is slightly worse than the one with the
proposed subband LPCNet, which is consistent with the objec-
tive evaluation results. These experimental results could be at-
tributed to the subband decomposition and the well-designed
structure, which decomposes the fullband speech into several
subbands with much shorter sequence length and reduces the
modeling complexity.

5. Conclusions
In this paper, we propose the subband LPCNet, a highly effi-
cient neural vocoder with subband-based linear prediction for
speech synthesis. Its computational complexity is significantly
reduced by exploiting domain knowledge of speech signals in
multirate signal processing, linear prediction analysis, and hu-
man auditory perception in different frequency bands. To alle-
viate the mismatch between the training and inference, a novel
subband autoregressive model is proposed to improve the in-
ference efficiency while maintaining the synthesized speech
quality. Both objective and subjective experiments show that
the proposed subband LPCNet vocoder outperforms the origi-
nal fullband LPCNet vocoder while accelerating the inference
speed at a rate three times faster.

In the future, we will continue to investigate the perfor-
mance of the subband LPCNet with an end-to-end, text-to-
speech synthesis system and introduce more knowledge of
speech coding to improve the efficiency and quality of synthe-
sized speech.

1https://scimagian.github.io/subbandLPCNet/demo/index.html

3558



6. References
[1] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[2] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” arXiv preprint arXiv:1802.08435, 2018.

[3] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[4] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. v. d. Driessche, E. Lockhart, L. C. Cobo,
F. Stimberg et al., “Parallel wavenet: Fast high-fidelity speech
synthesis,” arXiv preprint arXiv:1711.10433, 2017.

[5] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave generation
in end-to-end text-to-speech,” arXiv preprint arXiv:1807.07281,
2018.

[6] J. Lorenzo-Trueba, T. Drugman, J. Latorre, T. Merritt, B. Pu-
trycz, R. Barra-Chicote, A. Moinet, and V. Aggarwal, “To-
wards achieving robust universal neural vocoding,” arXiv preprint
arXiv:1811.06292, 2018.

[7] P.-c. Hsu, C.-h. Wang, A. T. Liu, and H.-y. Lee, “Towards robust
neural vocoding for speech generation: A survey,” arXiv preprint
arXiv:1912.02461, 2019.

[8] J.-M. Valin and J. Skoglund, “Lpcnet: Improving neural speech
synthesis through linear prediction,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 5891–5895.

[9] M.-J. Hwang, F. Soong, F. Xie, X. Wang, and H.-G. Kang,
“Lp-wavenet: Linear prediction-based wavenet speech synthesis,”
arXiv preprint arXiv:1811.11913, 2018.

[10] X. Wang, S. Takaki, and J. Yamagishi, “Neural source-filter-based
waveform model for statistical parametric speech synthesis,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5916–
5920.

[11] M. Airaksinen, B. Bollepalli, L. Juvela, Z. Wu, S. King, and
P. Alku, “Glottdnn-a full-band glottal vocoder for statistical para-
metric speech synthesis.” in Interspeech, vol. 9, 2016, pp. 2473–
2477.

[12] Y. Cui, X. Wang, L. He, and F. K. Soong, “A new glottal neural
vocoder for speech synthesis.” in Interspeech, 2018, pp. 2017–
2021.

[13] L. Juvela, B. Bollepalli, J. Yamagishi, and P. Alku, “Gelp:
Gan-excited liner prediction for speech synthesis from mel-
spectrogram,” arXiv preprint arXiv:1904.03976, 2019.

[14] L. Juvela, B. Bollepalli, V. Tsiaras, and P. Alku, “Glotnet—a raw
waveform model for the glottal excitation in statistical paramet-
ric speech synthesis,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 27, no. 6, pp. 1019–1030, 2019.

[15] M.-J. Hwang, E. Song, R. Yamamoto, F. Soong, and H.-
G. Kang, “Improving lpcnet-based text-to-speech with linear
prediction-structured mixture density network,” arXiv preprint
arXiv:2001.11686, 2020.

[16] T. Okamoto, K. Tachibana, T. Toda, Y. Shiga, and H. Kawai,
“Subband wavenet with overlapped single-sideband filterbanks,”
in 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). IEEE, 2017, pp. 698–704.

[17] ——, “An investigation of subband wavenet vocoder covering en-
tire audible frequency range with limited acoustic features,” in
2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5654–5658.

[18] A. Rabiee, G. Kim, T.-H. Kim, and S.-Y. Lee, “A fully time-
domain neural model for subband-based speech synthesizer,”
arXiv preprint arXiv:1810.05319, 2018.

[19] T. Okamoto, T. Toda, Y. Shiga, and H. Kawai, “Improving fft-
net vocoder with noise shaping and subband approaches,” in 2018
IEEE Spoken Language Technology Workshop (SLT). IEEE,
2018, pp. 304–311.

[20] C. Yu, H. Lu, N. Hu, M. Yu, C. Weng, K. Xu, P. Liu,
D. Tuo, S. Kang, G. Lei et al., “Durian: Duration informed
attention network for multimodal synthesis,” arXiv preprint
arXiv:1909.01700, 2019.

[21] Q. Tian, Z. Zhang, L. Heng, L. Chen, and S. Liu, “Feather wave:
An efficient high-fidelity neural vocoder with multiband linear
prediction,” arXiv preprint arXiv:arXiv:2005.05551, 2020.

[22] G. Yang, S. Yang, K. Liu, P. Fang, W. Chen, and L. Xie, “Multi-
band melgan: Faster waveform generation for high-quality text-
to-speech,” arXiv preprint arXiv:arXiv:2005.05106, 2020.

[23] K. Brandenburg and G. Stoll, “Iso/mpeg-1 audio: A generic stan-
dard for coding of high-quality digital audio,” Journal of the Audio
Engineering Society, vol. 42, no. 10, pp. 780–792, 1994.

[24] J. McAuley, J. Ming, D. Stewart, and P. Hanna, “Subband correla-
tion and robust speech recognition,” IEEE Transactions on Speech
and Audio Processing, vol. 13, no. 5, pp. 956–964, 2005.

[25] C. D. Creusere and S. K. Mitra, “A simple method for design-
ing high-quality prototype filters for m-band pseudo qmf banks,”
IEEE Transactions on signal processing, vol. 43, no. 4, pp. 1005–
1007, 1995.

[26] J.-M. Valin and J. Skoglund, “A real-time wideband neu-
ral vocoder at 1.6 kb/s using lpcnet,” arXiv preprint
arXiv:1903.12087, 2019.

3559


