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Abstract

Recently, the effectiveness of text-to-speech (TTS) systems

combined with neural vocoders to generate high-fidelity speech

has been shown. However, collecting the required training data

and building these advanced systems from scratch are time and

resource consuming. An economical approach is to develop a

neural vocoder to enhance the speech generated by existing or

low-cost TTS systems. Nonetheless, this approach usually suf-

fers from two issues: 1) temporal mismatches between TTS and

natural waveforms and 2) acoustic mismatches between train-

ing and testing data. To address these issues, we adopt a cyclic

voice conversion (VC) model to generate temporally matched

pseudo-VC data for training and acoustically matched enhanced

data for testing the neural vocoders. Because of the general-

ity, this framework can be applied to arbitrary TTS systems and

neural vocoders. In this paper, we apply the proposed method

with a state-of-the-art WaveNet vocoder for two different basic

TTS systems, and both objective and subjective experimental

results confirm the effectiveness of the proposed framework.

Index Terms: temporal mismatch, acoustic mismatch, cycle-

consistent, voice conversion, post-filter for text-to-speech

1. Introduction

Text-to-speech (TTS) is a technique to generate speech accord-

ing to the given text. Benefitting from the thriving development

of neural network (NN), the advanced TTS systems with NN-

based waveform generation models [1, 2] achieve very impres-

sive speech fidelity. However, the high quality and quantity re-

quirements of training data, the burden of data pre-processing,

and the time and resource consuming training process make it

difficult to build an advanced TTS system from scratch.

A flexible and economical approach to developing a high-

quality TTS system is to enhance the speech generated by low-

cost or existing TTS systems using an NN-based generation

model such as the WaveNet (WN) [3–6] vocoder. However,

there are two challenges for training and testing the NN-based

vocoder. First, if the NN-based vocoder is trained with nat-

ural acoustic features and waveforms, it will suffer from the

acoustic mismatch problem in the testing stage. The acoustic

mismatch between the synthetic testing acoustic features, which

are extracted from the TTS-generated waveforms, and the natu-

ral training acoustic features causes a significant speech quality

degradation. Secondly, even if training the vocoder with the

synthetic acoustic features and the natural waveforms, the tem-

poral structure mismatch between TTS-generated and natural

waveforms still degrades the performance of the vocoder.

To tackle these problems, a cycle-voice conversion (Cycle-

VC) [7] model is adopted to respectively generate temporally

matched pseudo converted acoustic features for training the

NN-based vocoder and acoustically matched enhanced acoustic

features in the testing stage. Specifically, the Cycle-VC model

includes two conversion paths. The first path converts the syn-

thetic acoustic features to the natural ones, and the second path

is composed of a natural to synthetic conversion model follow-

ing the synthetic to natural conversion model of the first path.

The enhanced and the pseudo converted acoustic features can

be respectively attained from the first and second paths. Be-

cause both the enhanced and the pseudo converted acoustic fea-

tures are converted by the Cycle-VC model, their acoustic mis-

matches are less than that of the synthetic and natural acoustic

features. Since the pseudo converted acoustic features are con-

verted from the natural acoustic features, their temporal struc-

tures are matched to the natural waveforms.

Both objective and subjective evaluations are conducted.

The experimental results show the speech quality degradations

caused by the acoustic and temporal mismatches and the effec-

tiveness of the proposed framework. To sum up, the contribu-

tions of this paper are three folds:

• This paper argues that TTS-generated speech with manu-

ally determined phoneme alignment still has very differ-

ent temporal structures from the related natural speech,

and these temporal mismatches cause significant speech

quality degradations.

• A WN vocoder trained and tested with the proposed

framework does enhance the TTS-generated speech.

• The proposed framework can be generalized for arbitrary

TTS systems and neural generation models.

2. Related work

For TTS systems with an NN-based vocoder, Tacotron2 [1]

has shown an early success by independently training an au-

toregressive (AR) mel-spectral predictor and then training a

WN vocoder with the output of the well-trained mel-spectral

predictor. ClariNet [2] improved it with a non-AR parallel

WN-like [8] vocoder and a jointly training manner. The au-

thors of [9] also proposed a generative adversarial network [10]

(GAN)-based framework to jointly optimize its mel-spectral

predictor and vocoder. However, these methods are exclusive

for specific mel-spectral predictors and difficult to be combined

with arbitrary existing TTS systems.

Furthermore, GAN-based [11] and WN-based [12, 13] de-

noising models also have been proposed to directly operate the

speech enhancement in the waveform domain. However, be-

cause the noisy and clean training data are usually paired, which
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Figure 2: Acoustic and temporal mismatches

have matched temporal structures, directly applying these meth-

ods for TTS post-filters still has a temporal mismatch problem.

In addition, the learning-based post-filters for synthetic

speech enhancement have been explored in different acous-

tic feature domains and NN-based models [14–18]. An ad-

vanced end-to-end GAN-based postfilter [19, 20] also has been

proposed to directly generate the enhanced waveforms. Al-

though the GAN-based approaches are effective for addressing

the temporal and acoustic mismatches problems, stably training

a GAN-based model is still difficult.

On the other hand, because of the different data length na-

ture of the source and target data in VC, NN-based vocoders

trained or fine-tuned with pseudo converted data have been

proposed. For instance, the intra-speaker VC frameworks,

which can obtain the pseudo converted data for fine-tuning

NN-based vocoders, have been explored with Gaussian mixture

model [21], long short-term memory [22], variational autoen-

coder [23], and cyclic gated recurrent unit (GRU) [7] models.

In this paper, inspired by the VC works combined with the fine-

tuned WN vocoders, the pseudo conversion mechanism is ap-

plied to the TTS post-filtering scenario.

3. Cycle-spectral conversion

As shown in Fig. 1, the Cycle-VC system is composed of

a target-to-source (TtoS) model and a source-to-target (StoT)

model. The conventional VC system usually consists of only a

StoT model, but the Cycle-VC system adopts an additional TtoS

model to advance the speech modeling capability of the StoT

model with the cycle-consistency. Moreover, the self-converted

target features are suitable for training or fine-tuning the NN-

based vocoders. That is, these self-converted target features are

alignment-free to the target waveforms, and their acoustic char-

acteristics are similar to the converted features.
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Figure 3: Cycle-VC training stage

In this paper, a cycle-spectral conversion model is adopted.

Given a source spectral vector X =
[

x⊤

1 , · · · ,x
⊤

n

]⊤

, a tar-

get spectral vector Y =
[

y⊤

1 , · · · ,y⊤

n

]⊤

, an StoT nonlinear

function f , and a TtoS nonlinear function g, the loss function is

formulated as

argmin
θ,φ

(‖f(X)− Y ‖L1 + ρ‖f(g(Y ))− Y ‖L1), (1)

where θ and φ are the model parameters of the StoT and TtoS

models, respectively. ‖·‖
L1

is the L1 norm. ρ is a hyper-

parameter, which is empirically set to 1e−8, to avoid the net-

work being dominated by the self-conversion. The network

structure consists of input convolution neural network (CNN)

layers, AR-GRU blocks, and output CNN layers to convert the

spectral features in a framewise manner.

4. Proposed post-filter for TTS

4.1. Acoustic and temporal mismatches

Because of the data-driven nature, NN-based vocoders are vul-

nerable to unseen testing data [24–26]. Specifically, NN-based

vocoders are usually trained with a pair of natural acoustic fea-

tures and waveforms, but the input acoustic features in the test-

ing stage are predicted from other models as shown in Fig. 2

(a). The acoustic mismatch between training and testing data

causes significant speech quality degradation.

In this paper, we argue that even if NN-based vocoders

are directly trained with a pair of synthetic acoustic features

and natural waveforms as Fig. 2 (b), the temporal mismatch

problem still causes severe quality degradation. Specifically,

although directly training the vocoder with synthetic acoustic

features and natural waveforms can alleviate the acoustic mis-

match problem in the testing stage, the temporal mismatch be-

tween them still markedly degrade the vocoder. Even if the syn-

thetic acoustic features are extracted from manually tuned TTS-

generated speech, which has synchronized phoneme durations,

short pauses, and silence segments to the natural target speech,

there are still some different temporal structures between TTS-

generated and natural waveforms. These temporal mismatches

in the vocoder training stage usually cause severe quality degra-

dations such as mispronunciation.

4.2. Post-filter with cyclical mismatch refinement

The proposed method is composed of a Cycle-VC training, a

vocoder training, and a post-filter testing stages. As shown in

Fig. 3, synthetic acoustic features, which are extracted from

TTS-generated speech, are taken as the source, and natural

acoustic features are taken as the target of the Cycle-VC model.

The StoT model is trained with the paired synthetic and natural

acoustic features, and the TtoS model is trained with the cycle-

consistency.

As the proposed framework shown in Fig. 4, an NN-based

vocoder is trained with a pair of temporally matched natural
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waveforms and pseudo converted acoustic features, which are

converted from natural acoustic features using the Cycle-VC

model. In the testing stage, the well-trained vocoder gener-

ates the enhanced speech from the enhanced acoustic features,

which are converted from the synthetic testing acoustic feature

using the StoT model. Note that the pseudo converted and en-

hanced acoustic features are supposed to be more acoustically

matched than the natural and synthetic acoustic features because

both of them are converted by the StoT model.

5. Experiments

5.1. Corpus and TTS system

An internal Japanese corpus, which included a female and a

male speakers, with sampling rate 48 kHz was adopted for de-

veloping single-speaker TTS systems. Each speaker had 800

training and 100 testing utterances, and the average length

of utterances was around 4 seconds. WORLD-based acous-

tic features [27], which included 60-dimensional mel-cepstral

feature (mcep), one-dimensional log-scaled fundamental fre-

quency (F0), five-dimensional aperiodicity (ap), and their delta

and delta-delta terms, were adopted for the TTS systems. The

minimum description length was set to 1.0.

Two basic and low-cost TTS systems, Hidden Markov

Model (HMM)-based and deep neural network (DNN)-based

systems, were adopted, and both of them were trained in a

speaker-dependent (SD) fashion using the very limited train-

ing data. Specifically, the HMM-based systems were trained

with the Hidden Semi-Markov Model (HSMM) training script

of HTS (ver. 2.3.2) [28], and the manual phoneme segmen-

tations were adopted to initialize the phoneme HSMMs. The

DNN-based systems were composed of four independent feed-

forward DNNs for respectively predicting the F0, ap, mcep,

and durations. Both systems adopted a maximum likelihood

parameter generation (MLPG) [29]. The manually refined

phoneme segmentations were utilized to generate synthetic

speech, which had the same phoneme durations as the natural

speech, of the entire training and testing sets. Moreover, a tra-

ditional spectral post-filter [28–30], which was included in the

HTS demo, with an enhanced coefficient 1.4 (β = 0.4) was

only applied to the DNN-based TTS system.

Figure 5: Relative mel-cepstral distances of acoustic features

on the MCD plane (post-filter w/ DNN-based TTS)

Figure 6: Relative mel-cepstral distances of acoustic features

on the MCD plane (post-filter w/ HMM-based TTS)

5.2. Cycle-VC model and WN vocoder

Both natural and TTS utterances were downsampled to 24 kHz

for SD Cycle-VC models and SD WN vocoders. WORLD-

based acoustic features, which included 45-dimensional mcep,

one-dimensional log-scaled F0 and unvoiced/voiced (U/V ) bi-

nary code, and three-dimensional coded ap, were adopted for

the input of the Cycle-VC models and the auxiliary features for

the WN vocoders. Note that the outputs of the Cycle-VC mod-

els were only the mcep features. The settings of the Cycle-VC

model followed the previous work [7], and the training epoch

was set to 15. Furthermore, several SD WN vocoders were in-

volved in the evaluations to show the effectiveness of the pro-

posed framework for different speakers and systems. The archi-

tecture and training processing of the WN vocoders followed

our previous work [31] with 200,000 iterations.

5.3. Objective evaluations

Figures 5 shows the relationships among natural (N), synthetic

(S), pseudo converted (P), and enhanced (E) mceps of the pro-

posed neural post-filters with DNN-based TTS systems on a

mel-cepstral distortion (MCD) plane. The distance between

any two points represents the average MCD of them. Specifi-

cally, although the TTS and natural speech waveforms have the
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Table 1: Comparison of testing WN vocoders

Acoustic features

Training Testing

Natural Natural

DNN-AM Natural Synthetic

HMM-AM Synthetic

DNN-TM Synthetic Synthetic

HMM-TM Synthetic Synthetic

DNN-NPF Pseudo converted Enhanced

HMM-NPF Pseudo converted Enhanced

same contexts and durations, the distance between the natural

and synthetic mceps (MCD(S, N)) is still the longest distance

on the plane, and this result implies the temporal mismatches

of the TTS and natural speech waveforms and the severe mis-

matches of their mceps. The smaller value of MCD(E, P) than

the value of MCD(S, N) indicates that the proposed framework

does alleviate the acoustic mismatches between the training and

testing mceps of NN-based vocoders. The smaller value of

MCD(E, N) than the value of MCD(S, N) also shows the effec-

tiveness of the Cycle-VC model to enhance the synthetic mcep.

Furthermore, Fig. 6 has a similar tendency as Fig. 5, which

shows the generality of the proposed framework even with dif-

ferent TTS systems.

5.4. Subjective evaluations

As shown in Table 1, seven training and testing combinations

of WN vocoders were included in the subjective evaluations.

Specifically, the WN vocoder trained with natural acoustic fea-

tures was tested by natural and DNN/HMM-based synthetic

acoustic features, which were the natural and acoustic mismatch

(AM) scenarios, respectively. The WN vocoders trained and

tested with the DNN/HMM-based synthetic acoustic features

were the temporal mismatch (TM) scenarios. The WN vocoders

respectively trained and tested with DNN/HMM-based pseudo

converted and enhanced acoustic features were the neural post-

filter (NPF) scenarios. The subjective evaluations included the

systems with these seven scenarios and the DNN-based and

HMM-based TTS systems. Note that all systems were trained in

an SD manner, so the total number of systems in the subjective

tests was 18.

For each testing system and scenario, we randomly selected

50 testing utterances to form the subjective set and the total

number of the utterances was 900. Ten subjects were involved

in a preference test and a mean opinion score (MOS) test, and

most of them were native speakers. Each subject evaluated a

part of the subjective set, and each utterance in the subjective

set was at least evaluated by one subject. The final results were

the average scores of the testing speakers.

As shown in Fig. 7, the enhanced utterances, which were

generated by the WN vocoders with the proposed post-filtering

framework, were respectively compared with the utterances suf-

fering the AM and TM problems. The results show the effec-

tiveness of the proposed framework to alleviate the AM and TM

problems and imply the generality of it for different TTS sys-

tems. The results also confirm our assumption that although

the TTS-generated speech has the same phoneme durations as

the natural speech, the different temporal structures still cause

a severe TM problem. Moreover, the AM problem also causes

significant speech quality degradations according to the results,
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so the proposed framework is essential for the post-filter appli-

cation with an NN-based vocoder.

Figure 8 shows the results of the MOS test, where each sub-

ject was asked to give a score (1–5) to evaluate the speech qual-

ity of the given utterance. The higher the socre, the higher the

speech quality. The results show that the proposed post-filter

markedly enhanced the TTS-generated speech, even if a tradi-

tional spectral post-filter was already applied to the DNN-based

TTS. Although there is still a room to improve the speech qual-

ity to attain the same quality as the upper bound, which is the

WN vocoder trained and tested with the natural acoustic fea-

tures, the significant improvements (> 1) of MOSs for both

TTS systems still show the effectiveness of the proposed frame-

work as a post-filter for arbitrary TTS systems.

6. Conclusions

In this paper, the harmful effects of the acoustic and temporal

mismatches for the TTS post-filter with an NN-based vocoder

are explored. The proposed framework adopts the Cycle-VC

framework to get the temporally matched pseudo converted

acoustic features for the training of the NN-based vocoder and

the acoustically matched enhanced acoustic features for the test-

ing of the neural post-filter. Both objective and subjective tests

of different TTS systems and speakers show the generality and

effectiveness of the proposed framework. For future works, we

intend to explore the proposed framework with more different

NN-based vocoders.
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M. Hasegawa-Johnson, “Speech enhancement using bayesian
wavenet.” in Proc. Interspeech, 2017, pp. 2013–2017.

[13] D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denois-
ing,” in 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2018, pp. 5069–5073.

[14] L.-H. Chen, T. Raitio, C. Valentini-Botinhao, J. Yamagishi,
and Z.-H. Ling, “Dnn-based stochastic postfilter for hmm-based
speech synthesis.” in Proc. Interspeech, 2014, pp. 1954–1958.

[15] L.-H. Chen, T. Raitio, C. Valentini-Botinhao, Z.-H. Ling, and
J. Yamagishi, “A deep generative architecture for postfiltering in
statistical parametric speech synthesis,” IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 23, no. 11, pp.
2003–2014, 2015.

[16] K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “The effect
of neural networks in statistical parametric speech synthesis,” in
2015 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2015, pp. 4455–4459.

[17] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and
K. Kashino, “Generative adversarial network-based postfilter for
statistical parametric speech synthesis,” in 2017 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2017, pp. 4910–4914.

[18] T. Kaneko, S. Takaki, H. Kameoka, and J. Yamagishi, “Genera-
tive adversarial network-based postfilter for stft spectrograms.” in
Proc. Interspeech, 2017, pp. 3389–3393.

[19] K. Tanaka, T. Kaneko, N. Hojo, and H. Kameoka, “Synthetic-
to-natural speech waveform conversion using cycle-consistent ad-
versarial networks,” in 2018 IEEE Spoken Language Technology

Workshop (SLT). IEEE, 2018, pp. 632–639.

[20] K. Tanaka, H. Kameoka, T. Kaneko, and N. Hojo, “Wavecycle-
gan2: Time-domain neural post-filter for speech waveform gener-
ation,” in Proc. Interspeech, 2019.

[21] K. Kobayashi, T. Hayashi, A. Tamamori, and T. Toda, “Statistical
voice conversion with wavenet-based waveform generation.” in
Proc. Interspeech, 2017, pp. 1138–1142.

[22] P. L. Tobing, T. Hayashi, Y.-C. Wu, K. Kobayashi, and T. Toda,
“An evaluation of deep spectral mappings and wavenet vocoder
for voice conversion,” in 2018 IEEE Spoken Language Technology

Workshop (SLT). IEEE, 2018, pp. 297–303.

[23] W.-C. Huang, Y.-C. Wu, H.-T. Hwang, P. L. Tobing, T. Hayashi,
K. Kobayashi, T. Toda, Y. Tsao, and H.-M. Wang, “Refined
wavenet vocoder for variational autoencoder based voice conver-
sion,” in 2019 27th European Signal Processing Conference (EU-

SIPCO). IEEE, 2019, pp. 1–5.

[24] Y.-C. Wu, P. L. Tobing, T. Hayashi, K. Kobayashi, and T. Toda,
“The nu non-parallel voice conversion system for the voice con-
version challenge 2018.” in Odyssey, 2018, pp. 211–218.

[25] Y.-C. Wu, K. Kobayashi, T. Hayashi, P. L. Tobing, and T. Toda,
“Collapsed speech segment detection and suppression for wavenet
vocoder,” in Proc. Interspeech, Sept. 2018, pp. 1988–1992.

[26] Y.-C. Wu, P. L. Tobing, K. Kobayashi, T. Hayashi, and T. Toda,
“Non-parallel voice conversion system with wavenet vocoder and
collapsed speech suppression,” IEEE Access, vol. 8, pp. 62 094–
62 106, 2020.

[27] M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-based
high-quality speech synthesis system for real-time applications,”
IEICE TRANSACTIONS on Information and Systems, vol. 99,
no. 7, pp. 1877–1884, 2016.

[28] K. Tokuda, H. Zen, J. Yamagishi, T. Masuko, S. Sako,
A. Black, and T. Nose, The HMM-Based Speech Synthesis

System (HTS) version 2.3.2, Accessed: 2017. [Online]. Available:
http://hts.sp.nitech.ac.jp/

[29] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 8, pp. 2222–2235, 2007.

[30] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Incorporating a mixed excitation model and postfilter into
hmm-based text-to-speech synthesis,” Systems and Computers in

Japan, vol. 36, no. 12, pp. 43–50, 2005.

[31] Y.-C. Wu, T. Hayashi, P. L. Tobing, K. Kobayashi, and T. Toda,
“Quasi-periodic WaveNet: An autoregressive raw waveform gen-
erative model with pitch-dependent dilated convolution neural
network,” IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, (submitted).

3544


