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Abstract

This paper presents the Tallinn University of Technology sys-
tems submitted to the Short-duration Speaker Verification Chal-
lenge 2020. The challenge consists of two tasks, focusing on
text-dependent and text-independent speaker verification with
some cross-lingual aspects. We used speaker embedding mod-
els that consist of squeeze-and-attention based residual layers,
multi-head attention and either cross-entropy-based or additive
angular margin based objective function. In order to encourage
the model to produce language-independent embeddings, we
trained the models in a multi-task manner, using dataset spe-
cific output layers. In the text-dependent task we employed a
phrase classifier to reject trials with non-matching phrases. In
the text-independent task we used a language classifier to boost
the scores of trials where the language of the test and enrollment
utterances does not match. Our final primary metric score was
0.075 in Task 1 (ranked as 6th) and 0.118 in Task 2 (rank 8).
Index Terms: speaker verification, cross-linguality, x-vectors,
SdSV Challenge

1. Introduction

In this paper, we describe the Tallinn University of Technology
(TalTech) systems developed for the Short-duration Speaker
Verification Challenge 2020 [1]. The challenge aims to eval-
uate new technologies for text-dependent and text-independent
speaker verification, focusing on the short duration scenario.
Its second special focus is on cross-lingual speaker verification
where the phonetic overlap between the enrollment and test ut-
terances has a large variety.

Recently, the field of speaker verification has advanced
rapidly, due to the development of neural network-based
speaker embeddings called x-vectors [2] and their various im-
provements. The neural-network based models require large-
scale speaker recognition training datasets that have been re-
cently released [3, 4]. Last years have also seen several popular
speech verification challenges, such as VOICES from the Dis-
tance Challenge 2019 [5], VoxCeleb Speaker Recognition Chal-
lenge [6] and the NIST SRE challenges [7, 8], that have an im-
portant role in advancing the field. The SdSV Challenge differs
from the other challenges in providing both text-dependent and
text-independent speaker verification tasks and in investigating
the cross-lingual aspects of speaker verification.

During the challenge, we explored several speaker embed-
ding model architectures, loss functions and data augmentation
techniques. This paper gives a detailed description of the mod-
els that we used in the final submission. We also describe the
models for handling text-dependent verification and language
identification. The paper lists the results of the individual and
fused models, and also analyzes the contribution of some meth-
ods that are are specific to the cross-lingual scenario of the chal-
lenge.
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Figure 1: Histogram of utterance lengths in seconds in the Task
2 data.

2. Datasets
2.1. SdSV Challenge datasets

The SdSV Challenge training and evaluation datasets originate
from the DeepMine corpus, collected using crowd-sourcing in
Iran [9]. The majority of the utterances are in Farsi (Persian)
and a smaller subset in English. For both Task 1 and 2, the
in-domain data provided by the challenge organizers is divided
into training, enrollment and test partitions.

The Task 1 training data consists of 101 063 utterances from
963 different speakers. The text of all utterances is drawn from a
fixed set of ten Farsi and English phrases. Some speakers in the
training data have multiple utterances of all phrases while some
have only Farsi phrases. The evaluation enrollment partition
contains 12 404 models, all of which contain three utterances of
a specific phrase from the same speaker. The phrase identifier
of the models in the enrollment data is provided. The evaluation
test partition contains 69 542 utterances.

The Task 2 training data consists of 85 764 utterances from
588 speakers. All utterances in training set are in Farsi. The
transcripts of the utterances are not provided. The evaluation
enrollment dataset contains 15555 models and 110673 utter-
ances. There is a lot of variety in the enrollment models: the
number of utterances per model ranges from 1 to 29 and the to-
tal speech duration per model is uniformly distributed between
3 to 120 seconds. The test partition contains 69 350 utterances
in both Farsi and English. The duration of the utterances in
training, enrollment and test partitions is quite different: while
the majority of the utterances in test partition are between two
and five seconds in length, the durations of training and enroll-
ment utterances cover a wider range (see Figure 1). We used
this observation when designing the backend for this task.

Since there are no official development datasets, we ran-
domly split the official training datasets into in-house training
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and development sets for both tasks. This was done by taking
a random 100 speaker subset of the training set together with
the corresponding utterances. The resulting development sets
were further split into enrollment and test datasets by drawing
a 1000-utterance sample into the test set and using other ut-
terances for generating a custom enrollment dataset that has a
similar distribution of utterances per model as evaluation data.

2.2. Other training datasets

The SASV Challenge uses a fixed training condition with lim-
ited training data. In addition to the in-domain training data,
only the VoxCelebl [3], VoxCeleb2 [4] and the LibriSpeech
[10] corpora were allowed to be used for training.

2.3. Non-speech datasets

The SASV Challenge allows using other non-speech datasets for
data augmentation purposes. Our data augmentation strategy
uses additive noises and reverberation. For additive noises, we
used the music and noise subsets of the MUSAN corpus [11].
For reverberation, we used simulated small and medium room
impulse responses [12] and real room impulse responses from
the BUT Speech@FIT Reverb Database [13]. We also used data
from the allowed speech corpora for generating babble noise.

3. Methods
3.1. Speaker embeddings

Our backend uses speaker embedding models derived from the
x-vector paradigm [2], with several enhancements.

Our models use either 30, 40 or 48 dimensional filterbank
features. Utterance level mean normalization is applied. We
do not use any speech activity detection. This has two reasons:
first, most of the utterances in training and test data are already
segmented to contain mostly speech; second, we use attention
mechanism in the pooling layer which is known to be relatively
insensitive to speech activity detection.

We apply on-the fly data augmentation during training us-
ing AugMix [14], a technique recently proposed for image
recognition. AugMix has two components: it generates stochas-
tic augmentations of the training data during learning and en-
courages the predictions produced from the original and aug-
mented training samples to be similar to each other, using
Jensen-Shannon divergence (JSD). Although we experimented
with both components during the challenge, we ended up using
only the stochastic data augmentation component and did not
use the JSD-based consistency loss in our final models, since
we didn’t observe significant benefits of the method. Further-
more, training models using consistency loss makes the train-
ing around 2.5 times slower. The stochastic augmentation tech-
nique works by generating new augmented copies of training
samples on-the-fly. A clean training segment is cloned into sev-
eral copies. A different randomly drawn series of augmentation
transforms, each possibly with random parameters, is applied
serially to each of the copies. Then, the augmented copies are
mixed with each other (using randomly sampled weights) and
the resulting super-augmentated sample is finally mixed with
the original clean sample, using a randomly sampled interpo-
lation coefficient (see Figure 2). The benefit of this method,
compared to using pre-generated static augmentations, is that
there is a lot of variety in the training data: each training sam-
ple is a result of several random transforms, applied in random
order and with a random weight.
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Figure 2: Sample augmentation pipeline in AugMix (largely
based on [14]). The number and type of transforms in each
augmentation path is randomly sampled. The augmented sig-
nals are mixed using randomly sampled w1 and w2. The mixed
augmented signal is finally interpolated with the original sig-
nal, using a sampled weight m.

The architecture of the speaker embedding model used by
most of our systems is summarized in Table 1. All speaker
embedding models that participated in our submission use the
Resnet34 architecture [15, 16] for frame level feature extraction
where the basic convolutional blocks with residual connections
are replaced with squeeze-and-attention modules [17, 18].

The statistics pooling layer that maps frame-level features
to segment level features is replaced in our model with a multi-
head attention layer [19] that has been shown to provide su-
perior performance [20, 21, 22, 23]. From among many vari-
ants of multi-head attention used in previous studies, we em-
ploy the one described in [20]: frame level representations are
first mapped to Ng¢: outputs (Ngtx = 128 in our model), using
a1l x 1 convolution and a ReLU nonlinearity; from this rep-
resentation, each attention head (we used Npeqqs = 5 heads)
computes it’s own softmax-based weight distribution over the
input utterance; finally, weighted mean and standard deviation
are computed over the frame level features for each head, re-
sulting in Npeads X 512 X 2 segment-level representations.

The last two layers of the model are replicated for each
training dataset, as depicted in Figure 3. That is, there is a
different pre-final dense layer and the final softmax layer for
each training corpus, and the number of outputs in the softmax
layer is equal to the number of speakers in the particular train-
ing dataset. This is different from the usual approach where
speakers from all datasets are pooled together during training.
This approach is similar to the multilingual bottleneck feature
extractors used in speech recognition [24]. This multitask ap-
proach is motivated by the fact that the speakers in the three
training datasets (VoxCeleb, LibriSpeeech and DeepMine) are
expected to sound very different. By separating them into differ-
ent softmax branches, we encourage the model to learn dataset-
independent features in the shared layers (including the embed-
ding layer) and place the dataset-specific discrimination capa-
bility into the final branched layers. Section 4.2 shows that
this improves the cross-lingual and cross-domain performance
of the resulting speaker embeddings.

We used two different objective functions for neural net-
work training: cross-entropy (CE) and additive angular margin



Table 1: The neural network architecture used for extracting
speaker embeddings. SE/res stands for squeeze-and-attention
block and residual connections.

Layer Spatial Size #Channels Kernel
Input FxT 1 -
Frame level representations
Pre-resnet FxT 64 7x7
[ 3x3
Res-block 1  F/2 x T/2 64 3x | 3x3
SE/res
[ 3x3 ]
Res-block2  F/4 x T/4 128 4x | 3x3
SE/res
[ 3x3 ]
Res-block 3  F'/8 x T'/8 256 6x | 3x3
SE/res
[ 3x3 ]
Res-block4  F/16 x T/16 512 3x | 3x3
SE/res
Post-resnet 1 x T/16 512 F/16 x 1~
Segment-level representations
Pooling 1 5% 512 x 2 MH-Attention
Embedding 1 512 Dense
Multi-output layers, one for each dataset
FC 1 512 Dense
Output 1 #Speakers Softmax

(AAM) softmax [25]. The AAM-Softmax parameter s is set to
30 and m to 0.2 radians. Both objective functions were applied
in the multi-task fashion, as described before.

We also experimented with phonetic bottleneck features
(BNFs). For this, we trained a bottleneck feature extractor on
the LibriSpeech data. We used Kaldi [26] to train a DNN acous-
tic model with factorized time-domain neural network layers.
The second-from-last layer in the model is a 40-dimensional
linear layer that is used for extracting bottleneck features. We
used the model to extract bottleneck features for all the training
and evaluation data. The bottleneck features were presented to
the speaker embedding model based on the approach proposed
in [27]. Bottleneck features are projected to 3-channel spatially
contiguous feature maps, having the same dimensionality as in-
put filterbank features. This is done using three dense layers
with ReLU nonlinearity. The three resulting channels are then
combined with the filterbank features, resulting in a 4-channel
input to the convolutional layers.

The models are implemented in PyTorch [28] using a
framework developed in our lab. Training segment loading,
data augmentation and feature extraction are all performed on
the fly, thus reducing both training time and disk space required
for training speaker embeddings on large datasets. Feature ex-
traction, and data augmentation together with model training
are performed on GPUs. One model can be trained in about 48
hours using three GPUs, without the need to prepare intermedi-
ate training data files from raw wave files.

3.2. Back-end modeling

For back-end modeling, we use cosine similarity and Prob-
abilistic Linear Discriminant Analysis (PLDA). Cosine simi-
larity is used with embeddings that are trained with AAM-
Softmax. The scores of enrollment-test pairs are calculated as
the cosine similarity of the two embeddings, after length nor-
malization. PLDA is used with embeddings trained using the
CE criterion. The final PLDA model is a linear interpolation of
models trained on out-of-domain and in-domain data.
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Figure 3: Speaker embedding extractor with dataset-specific
output layers

We use the Correlation Alignment (CORAL) technique [29,
30] to transform the embeddings of out-of-domain data to be
similar to in-domain embeddings.

Before estimating the PLDA model, embeddings are pre-
processed using LDA, whitening and length normalization.
200-dimensional LDA and the whitening transform are esti-
mated on in-domain data, while centering is performed on the
dataset that is used for training the PLDA. PLDA is estimated
on a subset of out-of-domain data (500k utterances from Vox-
Celeb and 100k utterances from LibriSpeech) and all of in-
domain data (except the portion used as in-house development
set). Data augmentation is applied to the input audio when
computing embeddings for training data. For Task 1, we use
subsegmented training data for PLDA training: since the length
distributions of test and training data are different, we randomly
split training data to segments of 2 to 4 seconds in length. This
improved our intermediate results by around 10%.

After scoring, results from all trials are subject to score nor-
malization. We use Adaptive Symmetric Score Normalization
[31]. The cohort is selected to be 400 closest utterances from a
random 5000 utterance subset of the in-domain training data.

3.3. Phrase classification

Task 1 of the challenge handles text-dependent speaker verifi-
cation. The task of the system is to verify that both the speaker
and the phrase of the test utterance matches with that of the en-
rollment model. The number of different phrases occurring in
evaluation data is limited to the 10 phrases that also occur in
training data, i.e., there are no out-of-set test phrases. This al-
lows to detect the Target-Wrong and Impostor-Wrong trials in
evaluation trials using a relatively simple phrase classification
model. The model that we used is similar to the one used for
extracting speaker embeddings, except that 5 TDNN layers are
used for frame-level feature extraction and a LSTM layer for
pooling. The utterance-level feature is taken from the output
of the LSTM corresponding to the last frame of the input ut-
terance. This is followed by a a single dense layer and a final
softmax layer. The model was trained on the in-domain training
data. On the in-house development set the phrase classification
accuracy was 100%. Post-evaluation analysis showed that the
equal error rate of the target-wrong trials in the evaluation set is
0.01% which confirms the accuracy of the model.

We used the model to add a bias of -99 to the trial scores
where the test utterance did not to match the enrollment phrase.



Table 2: Results of the individual systems that participated in
the final submission (Progress set).

FBank Criterion Fine- BNF DCF,.,;n EER
Dim tuning
Task 1
S 48 CE - - 0.090 2.34
40 CE - v 0.123  3.54
40 AAM v - 0.094 2.26
P  Fusion 0.076  2.09
Task 2
S 40 AAM v - 0.139  3.13
30 CE - - 0.139  3.17
P  Fusion 0.117 2.74

3.4. Language identification

In Task 2 evaluation data, a subset of the utterances are in En-
glish. In order to apply a different scoring strategy to the En-
glish test utterances, we built a language identification system
for classifying utterances based on the spoken language. For
this, we trained a model for extracting language embeddings,
using a subset of the of-out-domain English training data and all
of in-domain Farsi training data. The architecture of the model
is a simplified version of one that we used for extracting speaker
embeddings: it has 5 TDNN layers, uses multi-head attention
for pooling and cross-entropy for optimization. In addition to
the additive noise and reverberation based augmentation, it also
uses speed perturbation. The final language identification model
uses logistic regression to classify language embeddings, and is
trained an a small balanced subset of English and Farsi data.

It was difficult to get a reliable estimate of the language
identification performance of the resulting model, since there
were no English utterances spoken by Farsi speakers available
in the training data. The model classified 100% of the in-house
development data correctly but it was unclear how much the
model had learned to classify corpus-specific channel effects
and how much the actual language characteristics.

We used the language identification model as follows: in
the Task 2 systems that used the PLDA backend, we added a
small positive bias to the trial scores where the test utterance
was classified as being in English.

4. Results
4.1. Main results

Results of the individual systems that participated in our final
submission and their fusions for both tasks on the Progress set
are listed in Table 2. Results on the Evaluation set were al-
most identical. The final single systems differed in the dimen-
sionality of the used filterbank features, training criteria of the
speaker embedding models, the use of final finetuning of the
speaker embeddings model, and in the incorporation of bottle-
neck features. Fusion was done by simple linear interpolation
of the log-likelihood ration scores using uniform weights. The
single system submissions are marked with “S” and the primary
systems with “P”. It can be seen that models trained using the
CE and AAM criteria achieved similar results and their fusion
resulted in notable improvement.

We trained models that employ BNFs for both tasks. Al-
though they resulted in improvements on the in-house devel-
opment data, they gave disappointing results on the Progress
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Table 3: Results on Task 2 with and without a positive bias for
English test utterances.

Multi-output ~ Positive bias for DCFpn EER
embeddings English utterances

v v 0.140 3.20
- v 0.157 3.71
v - 0.143 325

Table 4: Comparison to other challenge results.

Task 1 Task 2

Team DCF  EER Team DCF  EER
NetEase (I1st)  0.046 1.52 IDLab (1st) 0.065 1.45
12R (2nd) 0.047 1.69 NICT (2nd) 0.074 1.50
TalTech (6th) 0.076  2.13 TalTech (8th) 0.117  2.74
Baseline 0.146 3.49 Baseline 0.432 10.7

set. Therefore we ended up using the model with BNFs only
in Task 1, since its inclusion in the final fusion gave small im-
provements.

4.2. Contrastive results

Table 3 lists the performance of some contrastive systems on the
Task 2 evaluation set. All results are based on a cross-entropy
based frontend and a PLDA-based backend.

All of the speaker embedding models that participated in
our submission were trained using multiple dataset-specific out-
put layers (Figure 3). Table 3 shows that replacing the multi-
output model with a single output model (i.e., where all speak-
ers are pooled) degrades the primary metric DF'Ch,irn, by 12%
and EER by 16% relative.

As described in section 3.4, we used a language identifica-
tion system in Task 2 to find test utterances that are probably in
English, and added a small bias to the corresponding trials, in
order to compensate for the language mismatch factor in scor-
ing. Table 3 shows that this method improves Task 2 results, but
the gain is small (around 2% relative).

4.3. Comparison to other systems

Our primary systems were ranked as 6th in Task 1 of the chal-
lenge (out ouf 20 final submissions) and as 8th in Task 2 (out ouf
35 submissions). Table 4 compares our results to the winning
teams’ results and the challenge baselines. While our results
outperformed the baselines by a large margin and were ranked
relatively high, there is a substantial performance gap between
our results and those of the best systems of the challenge.

5. Conclusions

This paper described the systems we developed for the SASV
Challenge 2020. For both text-dependent and text-independent
tasks we used a fusion of system that mainly differ in the
loss function that was used to train them. All our individual
speaker embedding models are based on the Resnet34 architec-
ture with squeeze-and-excitation modules. We also presented
post-evaluation analysis of two methods that aim to improve
speaker verification performance in the cross-lingual scenario.
We showed that when training speaker embedding models on
several (possibly out-of-domain) training corpora, using sepa-
rate output layers for each dataset can result in relatively large
performance improvement.
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