
Robust Text-Dependent Speaker Verification via Character-Level Information
Preservation for the SdSV Challenge 2020

Sung Hwan Mun, Woo Hyun Kang, Min Hyun Han and Nam Soo Kim

Department of Electrical and Computer Engineering and the Institute of New Media and
Communications, Seoul National University, Seoul, South Korea

{shmun, whkang, mhhan}@hi.snu.ac.kr, nkim@snu.ac.kr

Abstract
This paper describes our submission to Task 1 of the Short-
duration Speaker Verification (SdSV) challenge 2020. Task 1
is a text-dependent speaker verification task, where both the
speaker and phrase are required to be verified. The submit-
ted systems were composed of TDNN-based and ResNet-based
front-end architectures, in which the frame-level features were
aggregated with various pooling methods (e.g., statistical, self-
attentive, ghostVLAD pooling). Although the conventional
pooling methods provide embeddings with a sufficient amount
of speaker-dependent information, our experiments show that
these embeddings often lack phrase-dependent information. To
mitigate this problem, we propose a new pooling and score
compensation methods that leverage a CTC-based automatic
speech recognition (ASR) model for taking the lexical content
into account. Both methods showed improvement over the con-
ventional techniques, and the best performance was achieved
by fusing all the experimented systems, which showed 0.0785%
MinDCF and 2.23% EER on the challenge’s evaluation subset.
Index Terms: SdSV Challenge 2020, speaker verification.

1. Introduction
This paper presents our submission to Task 1 of the Short-
duration Speaker Verification (SdSV) Challenge 2020. The
main purpose of this challenge is to evaluate new techniques for
speaker verification in a short duration scenario [1]. The eval-
uation dataset used for the SdSV Challenge 2020 was derived
from the multi-purpose DeepMine dataset [2, 3]. We submitted
the systems to Task 1 of the SdSV Challenge 2020, which was
focused on text-dependent speaker verification (TD-SV).

During the past decade, there has been significant improve-
ment in the field of text-independent speaker verification (TI-
SV), which is mainly attributed to the development of deep neu-
ral network (DNN) based speaker embedding. These mecha-
nisms have been developed through a variety of methods such as
deeper architectures [4, 5, 6, 7], pooling strategies [6, 8, 9, 10],
and different objective functions [11, 12, 13, 14, 15, 16]. How-
ever, these techniques are optimized to discriminate only the
speaker and may be ineffective in the TD-SV task in which the
lexical context, as well as the speaker, is considered [17].

On the other hand, there have also been various efforts to
boost performance in the TD-SV. In [18], Larcher et al. used an
HMM-based system named HiLAM to model each speaker and
each senone state. H. Zeinali et al. [17] proposed a straight-
forward HMM-based extension of the i-vector approach [19],
which allows i-vectors to contain sufficient text-dependent in-
formation. In [20], Y. Lei et al. used DNN to estimate the pos-
teriors of the frames for calculation of sufficient statistics and E.
Variani et al. [21] extracted frame-level representations termed

d-vector through a hidden layer of DNN for the TD-SV task. In
[22], Matejka et al. employed bottle-neck DNN features con-
catenated to other acoustic features to improve the performance,
and Zhang et al. [23] proposed an attention aggregation-based
end-to-end TD-SV system which takes the speaker and phonetic
information into account.

In this paper, we focus on preserving the character-level in-
formation. Overall, our contributions are as follows:

• Character-level pooling: We introduce the aggrega-
tion method using the estimated frame-level posterior
obtained from an automatic speech recognition (ASR)
model. Experiments show that this method is valid and
effective in the TD-SV through the results on the chal-
lenge’s progress and evaluation subsets.

• Score compensation: We propose the score compensa-
tion method where the probability of pass-phrase is esti-
mated. Our experiments show that the usage of the pro-
posed score compensation significantly enhances perfor-
mance in the TD-SV even if the embedding network is
trained only to classify the speaker.

Furthermore, the fusion of different systems we employed pro-
duces the best performance on the challenge’s trial subsets.

The rest of this paper is organized as follows: Section 2
describes all components of our systems and Section 3 presents
the experimental conditions and results on the challenge’s trial
subsets we submitted. Finally, we conclude in section 4.

2. System components description
2.1. Front-end

In our systems, we used two types of front-end networks:
TDNN-based [6] and ResNet-based [5] architectures.

TDNN-based architecture. The configuration of TDNN-based
systems is shown in Table 1. The usage for each system is de-
scribed in Section 2.2 and 2.6. The input acoustic feature used
in this architectures was log Mel-filterbank energies calculated
from 20ms windows with a 10ms hop size and extracted via the
Librosa toolkit [24]. We selected 512 and 580 speaker embed-
ding dimensions for statistics pooling and character-level pool-
ing respectively. Our implementation and speaker embedding
network training was done using Tensorflow toolkit [25].

ResNet-based architecture. We used Thin ResNet34 architec-
ture recently proposed in [5] (Table 2). Compared to the origi-
nal ResNet [4], it has only a quarter of channels in each residual
block. In this architecture, we used 257-dimensional short-time
Fourier transform (STFT) with 200-300 frames crop as input
acoustic feature and chose 512 dimensions for embedding. For
implementation, we used Pytorch toolkit [26] and developed the
systems based on the architectures in [15].
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Table 1: TDNN-based front-end configuration for character-level pooling and score compensation. (d× n) indicates concatenation of
n vectors, where the dimensionality of each vector is d. T: The number of segment frames, N: The number of speakers, M: The number
of phrase types, CLP: Character-Level Pooling, LC: Locally-Connected, FC: Fully-Connected, BN: Batch Normalization.

Layer Configuration for character-level pooling method Configuration for score compensation method

TDNN Context Output Size TDNN Context Output Size

Input Log Mel-FBANK - 64 × T Log Mel-FBANK - 64 × T
Frame1 512, stride 2, ReLU, BN 5, [t-2 : t+2] 512 × T 1536, stride 2, ReLU, BN 5, [t-2 : t+2] 1536 × T
Frame2 512, stride 1, ReLU, BN 3, [t-2, t, t+2] 512 × T 512, stride 1, ReLU, BN 3, [t-2, t, t+2] 512 × T
Frame3 512, stride 1, ReLU, BN 3, [t-3, t, t+3] 512 × T 512, stride 1, ReLU, BN 3, [t-3, t, t+3] 512 × T
Frame4 512, stride 1, ReLU, BN 1, [t] 512 × T 256, stride 1, ReLU, BN 1, [t] 256 × T
Frame5 1536, stride 1, ReLU, BN 1, [t] 1536 × T 256, stride 1, ReLU, BN 1, [t] 256 × T
Pooling CLP T, [1 : T] (1536 ×29)× 1 CLP T, [1 : T] (256 ×29)× 1
Segment1 LC (speaker embedding) T, [1 : T] (20 ×29)× 1 LC T, [1 : T] (20 ×29)× 1
Segment2 FC T, [1 : T] 512 × 1 FC T, [1 : T] 512 × 1
Softmax FC T, [1 : T] N × 1 FC (posterior of phrase) T, [1 : T] M × 1

Table 2: Thin ResNet34-based front-end configuration. All con-
volutional layers have 1 zero-padding.

Layer Thin ResNet34 Output Size

Input STFT 257 × T × 1

Conv1 7×7, 16, stride 2 129 × T / 2 × 16
3×3, max pooling, stride 2 65 × T / 4 × 16

Conv2
[

3 × 3, 16
3 × 3, 16

]
×3, stride 1 65 × T / 4 × 16

Conv3
[

3 × 3, 32
3 × 3, 32

]
×4, stride 2 33 × T / 8 × 32

Conv4
[

3 × 3, 64
3 × 3, 64

]
×6, stride 2 17 × T / 16 × 64

Conv5
[

3 × 3, 128
3 × 3, 128

]
×3, stride 2 9 × T / 32 × 128

FC 9×1, 512, stride 1 1 × T / 32 × 512

2.2. Pooling methods

In the TI-SV task, various pooling mechanisms have been pro-
posed such as statistics pooling [6], self-attentive pooling [8],
learnable dictionary encoding (LDE) pooling [9], mutual in-
formation neural estimate (MINE) based pooling [10]. In this
work, we employed a variety of pooling methods proposed in
the TI-SV task. On top of that, we propose a pooling strat-
egy suitable for the TD-SV, i.e., character-level pooling, which
leverages a frame-level probability distribution of each charac-
ter estimated from the end-to-end based ASR model. The pool-
ing methods we used are as follows:

• Statistics Pooling (SP) [6]

• Self-Attentive Pooling (SAP) [8]

• GhostVLAD Pooling (GVP) [9]

• Character-Level Pooling (CLP)

Character-level pooling. To extract the utterance-level repre-
sentation appropriate for the TD-SV, we exploit the character
posterior probabilities of each frame-level feature. The proba-
bility of a character given a frame-level feature, i.e., the poste-
rior, is denoted by:

πk,i = P (C = ck|hi) (1)

where the set C = {ck| ck is kthcharacter, 1 ≤ k ≤ K},
and hi is the ith frame-level feature withD1 dimensions where
1 ≤ i ≤ T . K indicates the number of symbols in the character
set, and T is the number of segment frames. To estimate πk,i,

we leveraged the decoder outputs of the end-to-end based ASR
model, termed Jasper, proposed by [27]. Since this model
was trained by using the Connectionist Temporal Classification
(CTC) loss, our character set consisted of a total of 29 symbols
including all alphabets (a-z), the space symbol, the apostrophe
symbol and the blank symbol used by the CTC loss. Then, the
aggregation for character-level representation is as follows:

vk =

∑T
i=1 πk,ihi + τ∑T
i=1 πk,i + τ

(2)

v =
(
v1

T | . . . | vK
T
)T (3)

where τ is a constant added to avoid divergence. All the
character-level representations are concatenated as v, and then
it’s passed through the locally-connected layer, which has K-
part fully-connected layers for reducing dimensions and taking
character-level affine transformation.

ek = f(Wkvk + bk) (4)

e =
(
e1

T | . . . | eK
T
)T (5)

Where Wk and bk indicate trainable parameters with D2×D1

and D2 dimensions respectively and f(·) means a non-linear
activation function. Finally, we can obtain an utterance-level
embedding e (See Table 1).

2.3. Objective functions

In our work, we made use of various objective functions con-
ventionally used in speaker embedding training. Some variants
of softmax-based classification loss were employed in our sys-
tems. Also, we used end-to-end based losses which directly
optimize distance metrics such as Euclidean or Cosine distance.
The objective functions used in the systems are as follows:

• Standard Softmax
• Additive Margin Softmax (AM-Softmax) [12, 13]
• Additive Angular Margin Softmax (AAM-Softmax) [14]
• Angular Prototypical Loss (A-Prototypical) [15]
• Generalized End-to-End Loss (GE2E) [16]

2.4. Back-end

In the back-end module, we only used cosine similarity as
a scoring method between the two speaker embeddings. No
Linear Discriminant Analysis (LDA), Within-Class Covariance
Normalization (WCCN), and Probabilistic Linear Discriminant
Analysis (PLDA) was applied in this work.
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Table 3: Results on the Trial Subsets for the SdSV Challenge 2020 without AS-Norm & Score Compensation. TDT: Text-Dependent
Training, Deep: DeepMine, Vox1: VoxCeleb1, Vox2: VoxCeleb2, Libri: LibriSpeech.

# Front-End Objectives Pooling Training Dataset Progress subset Evaluation subset

MinDCF EER[%] MinDCF EER[%]

1
TDNN Softmax CLP

Deep 0.3755 9.19 0.3775 9.18
2 Deep / Vox1 0.3571 8.45 0.3585 8.48
3 Deep / Vox1 / Vox2 0.4044 8.97 0.4066 9.00
4 TDNN Softmax (TDT) CLP Deep 0.3547 8.82 0.3554 8.88
5

TDNN Softmax SP
Deep 0.8679 17.18 0.8688 17.25

6 Deep / Vox1 0.7636 14.37 0.7641 14.45
7 Deep / Vox1 / Vox2 0.6511 12.71 0.6539 12.77
8 ResNet34 Softmax GVP Vox2 0.8891 14.84 0.8897 14.87
9 ResNet34 AAM-Softmax SAP Deep / Vox1 / Vox2 0.9030 16.09 0.9021 16.12
10 Deep / Vox1 / Vox2 / Libri 0.9157 16.39 0.9159 16.45
11 ResNet34 AM-Softmax SAP Deep / Vox1 / Vox2 0.8944 15.76 0.8931 15.84
12 Deep / Vox1 / Vox2 / Libri 0.9195 16.42 0.9181 16.47
13 ResNet34 A-Prototypical SAP Vox2 0.7957 13.35 0.7973 13.33
14 Deep / Vox1 / Vox2 0.8659 15.92 0.8652 15.98
15 ResNet34 GE2E SAP Deep / Vox1 / Vox2 0.9226 16.39 0.9212 16.45
16 x-vector baseline (provided by SdSV) 0.5290 9.05 0.5287 9.05

2.5. Score normalization

To minimize the domain mismatch (e.g., languages, recording
environments, etc.) between the training and the evaluation set
and to normalize the distribution of scores during fusion be-
tween different models, we used the Adaptive Symmetric Score
Normalization (AS-Norm) [28]. We selected speaker-phrase
dependent models in DeepMine Task1 Train Partition (i.e., in-
domain training data) as cohort set and used the most similar
top 300 scoring files to calculate normalization variables of en-
rollment and test sets respectively.

2.6. Score compensation

Since the TI-SV approaches focus on minimizing the within-
speaker variability, the embedding vectors may lack crucial in-
formation on the lexical content. Thus such embedding vectors
are improper for the TD-SV experiments. To complement the
lost contextual discriminability, we introduce a score compen-
sation method. Firstly, we define the posterior of the phrase as
follows:

uX =
(
P (U = u1|X) , . . . , P (U = uM |X)

)T (6)

M∑
j=1

p(U = uj |X) = 1 (7)

where the set U = {uj | uj is j
thphrase, 1 ≤ j ≤ M},

M is the number of phrase types in the TD-SV’s dataset, X
is an acoustic feature such as MFCC. We estimate the posterior
p(U = uj |X) using softmax layers of TDNN-based network.
The architecture of this network is identical to the configuration
of TDNN-based architecture for CLP but composed of smaller
size layers to prevent overfitting (See Table 1). For training
the network, we used DeepMine Task1 Train Partition which
includes 10 types of phrases. Finally, we compute the compen-
sation factor and the total score between X and Y as follows:

sphrX,Y = uX
T uY (8)

sX,Y = s̃spkX,Y + αsphrX,Y (9)

where sphrX,Y is compensation factor, s̃spkX,Y is the normalized
(AS-Norm) score between embeddings of X and Y, α is a scale
factor, and sX,Y is the total score between X and Y.

3. Experimental conditions and Analysis
3.1. Training condition

According to the fixed training condition of the challenge, we
used the designated datasets for training our systems and uti-
lized RSR2015 dataset [18] as a validation set for monitoring.
The training set for each system was the combination of differ-
ent datasets and each training dataset is described as follows.

DeepMine (Task 1 Train Partition). This is the main dataset,
i.e., in-domain data, of the SdSV Challenge. It contains 101,063
utterances from 963 speakers, which have five Persian and five
English phrases. We used it for training (1) speaker embedding
network and (2) estimating the posterior of phrase, and also as
(3) cohort set to calculate parameters of AS-Norm.

VoxCeleb1 & 2. We used the development sets of Vox-
Celeb1 [29] and VoxCeleb2 [30], which consist of 148,642 and
1,092,009 utterances from 1,211 and 5,994 speakers respec-
tively. In our systems, they were used to train the speaker em-
bedding networks.

LibriSpeech. To train the CTC-based ASR model, namely
Jasper, which was utilized in character-level pooling and for
estimating the posterior of phrase, we used the train-clean/other
sets of LibriSpeech corpus [31], which comprise 281,241 utter-
ances from 2,338 speakers. Additionally, in some systems, we
employed them for training speaker embedding networks.

3.2. Trial condition

According to the trial condition of the challenge, the enrollment
was accomplished using three utterances of a specific phrase
for each model and among four types of trials in the TD-SV
task, only Target-Correct, where the target speaker utters the
correct pass-phrase, was considered as target and the rest was an
imposter. The trial set was divided into two subsets: a progress
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Table 4: Results on the Trial Subsets with AS-Norm & Score Compensation and the Fusions. †: Fusion is equal-weighted sum.

# Front-End Objectives Pooling Training Dataset Progress subset Evaluation subset

MinDCF EER[%] MinDCF EER[%]

1
TDNN Softmax CLP

Deep 0.2164 5.79 0.2185 5.82
2 Deep / Vox1 0.1845 4.72 0.1856 4.80
3 Deep / Vox1 / Vox2 0.1892 4.91 0.1918 4.98
4 TDNN Softmax (TDT) CLP Deep 0.2327 5.88 0.2333 5.98
5

TDNN Softmax SP
Deep 0.2540 7.35 0.2554 7.42

6 Deep / Vox1 0.2069 5.54 0.2085 5.63
7 Deep / Vox1 / Vox2 0.1730 4.49 0.1753 4.55
8 ResNet34 Softmax GVP Vox2 0.1993 4.59 0.2017 4.65
9 ResNet34 AAM-Softmax SAP Deep / Vox1 / Vox2 0.1327 3.15 0.1332 3.21
10 Deep / Vox1 / Vox2 / Libri 0.1321 3.30 0.1325 3.33
11 ResNet34 AM-Softmax SAP Deep / Vox1 / Vox2 0.1299 3.13 0.1307 3.18
12 Deep / Vox1 / Vox2 / Libri 0.1387 3.53 0.1395 3.58
13 ResNet34 A-Prototypical SAP Vox2 0.1762 3.99 0.1769 3.96
14 Deep / Vox1 / Vox2 0.1647 3.83 0.1654 3.85
15 ResNet34 GE2E SAP Deep / Vox1 / Vox2 0.1768 4.08 0.1778 4.07
16 x-vector baseline (provided by SdSV) 0.5290 9.05 0.5287 9.05
17 i-vector/HMM baseline (provided by SdSV) 0.1472 3.47 0.1464 3.49

18 Fusion of TDNNs [1-7]† 0.1242 3.50 0.1257 3.55

19 Fusion of ResNet34s [8-14]† 0.0940 2.40 0.0942 2.42

20 Fusion of all systems [1-14]† 0.0771 2.18 0.0785 2.23

subset (30%), and an evaluation subset (70%). The progress
subset was used to monitor progress on the leaderboard, while
the evaluation subset was used for the official results.

3.3. Analysis

We analyzed two experimental scenarios. First, we verified the
feasibility and effectiveness of the character-level pooling strat-
egy for the TD-SV task through the results on the progress and
evaluation subsets (Table 3). In the second experiment, we ap-
plied AS-Norm and score compensation to all the systems we
used in the first experiment, to further boost the performance.
Also, we fused different systems and confirmed the best pri-
mary system and single system on the progress and evaluation
subsets in terms of MinDCF, which was the main metric for the
challenge (Table 4). No preprocessing such as data augmenta-
tion or VAD was applied to the training and trial data.

Analysis of character-level pooling strategy (Table 3). Each
subsystem (1-15) was composed of different front-ends, pooling
techniques, objectives, and training datasets described in Sec-
tion 2 and 3.1. Among them, system (5) utilized text-dependent
training (TDT), which was jointly trained by combined classes
of speaker and phrase (i.e., speakers × phrases classes). In sys-
tems of (5-16), phrase information was not considered, since
they were trained for TI-SV. For the reasons stated in Section
2.2, the character-level pooling methods (systems 1-4) showed
improved performances compared with other systems in terms
of 0.3554 MinDCF and 8.48% EER on the challenge’s evalua-
tion subsets (See Table 3).

Results using AS-Norm & score compensation (Table 4). We
used AS-Norm and score compensation described in Sections
2.6 and 2.7 respectively, for improvement of performances. As
you can see in Table 4, the performance of all systems was im-
proved significantly. In particular, the performances of systems
that didn’t consider the lexical context (5-15) increased greatly,

compared to the character-level pooling systems (1-4), which
showed minor improvement. The best performance of a single
system was 0.1307 MinDCF and 3.18% EER on the evaluation
subsets. From these results, we could interpret that the better
the speaker is distinguished, the higher the performance can
be achieved, when score compensation was applied. Finally,
we performed the fusion by computing the equal-weighted sum
of the scores of different systems, which were TDNN-based
(18), ResNet-based (19), and all systems (20). Overall, the per-
formance of ResNet-based systems outperformed TDNN-based
systems in the case of both single systems and fusions, and the
best primary system was the fusion of all systems. It obtained
0.0785 MinDCF and 2.23% EER on the evaluation subset.

4. Conclusions
In this paper, we described our submission to Task 1 of the
SdSV Challenge 2020. We propose a new pooling and score
compensation methods that leverage a CTC-based end-to-end
ASR model for taking the lexical content into account. Our
systems contained two front-end architectures and acoustic fea-
tures, and various pooling methods including our proposal, and
different objective functions. Experiments show that the usage
of the proposed character-level pooling and score compensation
methods significantly enhances text-dependent speaker verifica-
tion performance. Finally, the best performance of the primary
system was obtained through the fusion of all the experimented
systems, which showed 0.0785% MinDCF and 2.23% EER on
the challenge’s evaluation subset.
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