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Abstract

Modern approaches to speaker verification represent speech ut-
terances as fixed-length embeddings. With these approaches,
we implicitly assume that speaker characteristics are indepen-
dent of the spoken content. Such an assumption generally holds
when sufficiently long utterances are given. In this context,
speaker embeddings, like i-vector and x-vector, have shown to
be extremely effective. For speech utterances of short duration
(in the order of a few seconds), speaker embeddings have shown
significant dependency on the phonetic content. In this regard,
the SdSV Challenge 2020 was organized with a broad focus on
systematic benchmark and analysis on varying degrees of pho-
netic variability on short-duration speaker verification (SASV).
In addition to text-dependent and text-independent tasks, the
challenge features an unusual and difficult task of cross-lingual
speaker verification (English vs. Persian). This paper describes
the dataset and tasks, the evaluation rules and protocols, the per-
formance metric, baseline systems, and challenge results. We
also present insights gained from the evaluation and future re-
search directions.

Index Terms: Speaker Recognition, Benchmark, Short-
duration, Evaluation

1. Introduction

Also known as voice authentication, the purpose of speaker ver-
ification is to authenticate a claim of identity using the per-
son’s voice. This is realized in the form of an automatic pro-
cess of either accepting or rejecting the claim by using some
salient characteristics inherent in a test utterance. A specificity
of speaker verification comes from the possibility of remote au-
thentication through various communication channels such as
telephone, voice over IP, or radio-frequency. This potential
makes the technology attractive (e.g., transaction authentication
for mobile banking) though challenging due to the variety of in-
trinsic and extrinsic factors (e.g., emotion state, phonetic con-
tent, channels, and environments) that can affect speaker verifi-
cation performance.

Among others, two predominant elements of a spoken ut-
terance are its phonetic content and the vocal characteristic of
the speaker. From one sentence to another, or even when the
same sentence is uttered by the same speaker, the phonetic vari-
ation is an undesirable nuisance to a speaker verification sys-
tem. Not forgetting as well other extrinsic factors, like channel
effects [1], that have to be dealt with delicately. Modern ap-
proaches to speaker verification represent speech utterances as
fixed-length vectors — the so-called speaker embeddings. From

Copyright © 2020 ISCA

731

i-vector [2] to the recent x-vector [3] embedding, phonetic vari-
ability is suppressed with a simple averaging (i.e., temporal
pooling), which has shown to be effective for long utterances.

For speech utterances of short duration (in the order of a few
seconds), the speaker embeddings show significant dependency
on their phonetic content. In this regard, it is common to model
both speaker and spoken content jointly [4], for instance, mod-
eling of speaker pronunciation of individual words, syllables,
or phones. This marks the major difference between the text-
dependent and text-independent speaker verification tasks [5].
The main idea of the former is to directly exploit the voice indi-
viduality associated with a specific phonetic context. Though
remains as a subject of much debate, we believe the major
impediment lies at the short duration which makes it difficult
to suppress phonetic contents from speaker cues via temporal
pooling — a core mechanism used in state-of-the-art speaker em-
bedding.

Following the RedDots Challenge', the SdSV Challenge®
aims to acquire a better understanding and explore new research
directions on speaker-phonetic variability modeling for speaker
verification over short utterances. Different from the RedDots
challenge, the SASV was organized as an online leader-board
challenge. It also features an evaluation set with the number
of speakers and trials two-order of magnitude larger than the
former [6]. In addition to text-dependent and text-independent
tasks, the challenge features an unusual and difficult task of
cross-lingual speaker verification (English vs. Persian). The
three different tasks facilitate systematic benchmark and anal-
ysis on varying degrees of phonetic variability (text-dependent,
text-independent, and cross-lingual) on short-duration speaker
recognition.

This paper describes the SASV Challenge 2020, the dataset
and tasks, the evaluation rules and protocols, the performance
metric, baseline systems, and challenge results.

2. Task and Dataset

The SdSV Challenge consists of two separate tasks. We de-
scribe below the details of each task and the corresponding
dataset for training and evaluation.

2.1. Task Description

Task-1 of the SASV Challenge is defined as the speaker ver-
ification in text-dependent mode. It is a twofold verification
task in which both speaker and phrase are verified — given a

Uhttps://sites.google.com/site/thereddotsproject/reddots-challenge
Zhttps://sdsvc.github.io
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Table 1: Number of trials in each partition of Task-1.

Language Gender | TC ™ IC
Farsi Male 94, 856 226,357 1,370,326
Farsi Female | 154,210 368,864 2,178,576
English Male 79,804 430,933 925, 257
English Female | 133,653 721,274 1,622,590
Total | 462,523 1,747,428 6,096,749

test segment of speech and the target speaker’s enrollment data,
determine whether the test segment and a specific phrase was
spoken by the target speaker. To this end, we define each trial
to consist of a test segment along with a model identifier which
indicates a phrase ID and three enrollment utterances. The en-
rollment utterances amount to an average of 7.6 seconds for
each speaker-passphrase pair, while the average duration of test
utterances is 2.6 seconds.

The enrollment and test phrases are drawn from a fixed
set of ten sentences consisting of five Persian and five En-
glish phrases. Table 1 shows the number of trials for
each language, gender, and trial type. There are four
trial types, namely, farget-speaker/correct-phrase (TC), target-
speaker/wrong-phrase (TW), imposter/correct-phrase (1C) and
imposter/wrong-phrase (IW) [S]. Systems should only accept
TC trials and reject the rest. Since it is not difficult to reject IW
trials, this type is not used for the challenge.

Task-2 of the challenge is the speaker verification in text-
independent mode. Given a test segment of speech and the tar-
get speaker enrollment data, the task is to determine whether
the test segment was spoken by the target speaker. Each trial
comprises a test segment of speech along with a model identi-
fier which indicates one to several enrollment utterances. The
net enrollment speech for each model is randomly distributed
between 4 to 180 seconds, after applying an energy-based VAD
with an average of 49.3 seconds. The same test data as Task-1
is used here. More information about the challenge, tasks, and
rules can be found in the challenge evaluation plan [7].

There are two evaluation conditions for this task corre-
sponding to two types of trials. The first is a typical text-
independent trial where the enrollment and test utterances are
from the same language (Persian). The second is a text-
independent cross-language trial where the enrollment utter-
ances are in Persian and test utterances are in English. Because
of the addition of within-speaker cross-language variability, this
type of trial is expected to be more difficult. Similar to Task-1,
there are no cross-gender trials in Task-2. Table 2 shows the
number of trials for each language, gender, and trial type. In or-
der to be able to do a better comparison between text-dependent
and independent speaker verification, TC-vs-IC trials for Farsi
language from Task-1 were added to Task-2 trials which contain
249,066 and 3, 548, 902 target and imposter trials respectively.
In the results tables, this subset is indicated by FA TC-vs-IC.

2.2. Training and Evaluation Data

The evaluation and in-domain training data for the challenge
are selected from DeepMine dataset [8, 9]. For both tasks a
fixed training condition is used where the systems should only
be trained using a designated set which composed of VoxCeleb
1&2 [10, 11], LibriSpeech [12] and task-specific in-domain
training data.

For the Text-Dependent Task-1, the in-domain training data
contains utterances from 963 speakers, some with only Persian
phrases. Model enrollment is done in a phrase and language-
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Table 2: Number of trials in each partition of Task-2.

Language Gender | Target Imposter

Farsi Male 474,920 3,008, 447
Farsi Female 760, 565 4,691,234
English Male 278,863 1,337,038
English Female 470,659 2,176,298
Total | 1,985,007 1,121, 3017

dependent way using three utterances for each model. For
the Text-Independent Task-2, the in-domain training data in
this task contains text-independent Persian utterances from 588
speakers.

3. Baselines and Performance Metrics

Two baseline systems were made available to the participants
illustrating the use of the dataset and the expected results on
text-dependent Task-1 and text-independent Task-2. Systems
were evaluated based on their detection cost.

3.1. Baselines

We provided two baseline systems. The first baseline is a x-
vector system [3], which has shown good performance in a
short-duration scenario. The x-vector baseline is denoted as
B01, and was used for both text-dependent and text-dependent
tasks as shown in Section 4. The second baseline is an i-
vector/HMM system, denoted as B02, and was designed specifi-
cally for text-dependent task. The method was proposed in [13,
4] and have achieved very good results on both RSR2015 [5]
and RedDots [6] text-dependent datasets.

The x-vector baseline follows an extended-TDNN (E-
TDNN) topology [14] and was trained using VoxCeleb 1 and 2
dataset. A linear discriminant analysis (LDA) with 150 dimen-
sions is applied to the extracted x-vectors and after that, a prob-
abilistic LDA (PLDA) with both VoxCeleb datasets is trained.
Finally, trials are scored using the PLDA without any score nor-
malization.

Different from that of the x-vector system, the i-
vector/HMM baseline considers phrase information and there-
fore more suitable for the text-dependent task. In this method,
i-vector is used as a fixed dimension representation for each ut-
terance. In contrast to the conventional i-vector/GMM method,
which uses GMM for aligning input frames to Gaussian com-
ponents, here monophone HMM:s are used for the frame align-
ment. Therefore, monophone HMMs are trained first using the
in-domain training data. Phrase specific HMMs are constructed
using the monophone HMMs and used to obtain alignments of
frames to HMM states and the GMM components within the
states. These alignments are used to extract sufficient statistics
from each utterance. Finally, the statistics are used to train an
i-vector extractor and to extract i-vectors from enrollment and
test utterances. Scoring is done using LDA-Cosine and scores
are normalized using the t-norm method. A full description of
this method can be found in [4].

3.2. Evaluation Metrics

The main performance metric adopted for the challenge is the
normalized minimum Detection Cost Function (DCF) defined
as a weighted sum of the miss and false alarm error probabili-
ties:

CDet = CIM'LSS X P]\liss | Target X PTarget + CFalseAlaT'm

X PFalseAlarm | NonTarget X (]- - PTa'rget) 5
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Figure 1: DET curves of the best performing team for Text-
Dependent Task-1.

Where» CM'LSS - 10, CFalseAla'rm = 1and PTarget = 0.01.
Based on the parameters, the normalized DCF (DCF’orm,) 18
DCEF divided by 0.1 as the best cost that could be obtained
by constant decision (i.e. rejecting all trials). In addition to
MinDCFE2.2} | the Equal Error Rate (EER) will be reported as
the common metric in speaker verification.

4. Challenge Results

The SASV challenge was well received by the speaker recogni-
tion community. Sixty-seven teams from academia and indus-
try in 23 countries registered for this challenge. Among these,
49 teams registered for both tasks, 4 teams to Task-1 only, and
14 teams enrolled in Task-2 only. At the end of the evaluation
phase, we received submissions from 34 teams for Task-2 and
20 teams for Task-1, while there are more submissions on the
leader-boards (some teams did not submit the final systems). In
this section, we report and discuss the results of this challenge
and provide our observations on the results, especially for the
best performing teams. Details of the best single and primary
systems are reported in their respective papers.

4.1. Progress versus Evaluation Subsets

For the challenge, we created a progress subset and an eval-
uation subset by taking 30 % and 70 % of the entire trial set,
respectively. The progress subset was used for monitoring the
performance on the leaderboards, while the evaluation subset
was designated for reporting final official results at the end of
the evaluation phase.

4.2. Results on Text-Dependent Task-1

Among the 53 registered teams, 20 teams submitted their fi-
nal scores for Task-1. In Table 3, we report the results of all
submitted primary systems of Task-1 in terms of MinDCF and
EER. Note that results are reported on both progress and eval-
uation subsets in progress/evaluation format. It could be ob-
served from Table 3 that all participating teams achieved con-
sistent performance across progress and evaluation subsets and
no unexpected behavior was observed. This indicates that the
subsets of the test trials were created properly. Compared to our
i-vector/HMM baseline B02 60% of the participating teams pro-
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Table 3:  Results of Text-Dependent Task-1. Results are
shown in Progress | Evaluation format and sorted based on the

MinDCF2.0L  on Evaluation set.

IDs EER[%] MinDCE2%%, \IDs EER[%]  MinDCF2:%%,
TS56 1.45/1.52 0.0417/0.0422 | TO5  2.84/2.94 0.1194/0.1203
T4 1.45/1.52 0.0450/0.0456 | BO2  3.47/3.49 0.1472/0.1464
TO$ 1.62/1.69 0.0469/0.0470 | T18 4.11/4.21 0.1508/0.1515
T10 1.58/1.60 0.0649/0.0658 | T25 6.61/6.61 0.2441/0.2464
T26 2.10/2.14 0.0718/0.0719 | T45 5.75/5.77 0.2720/0.2709
T34 2.09/2.13 0.0757/0.0758 | T0O3  6.96/7.01 0.3146/0.3163
TO1 2.18/2.23 0.0771/0.0785 | T13 13.37/13.49 0.4836/0.4830
T29 2.57/2.61 0.0887/0.0888 | T11  8.95/8.98 0.5077/0.5056
T20 2.33/2.34 0.0891/0.0897 | BO1  9.05/9.05 0.5290/0.5287
T49 3.30/3.37 0.0971/0.0971 | T31  9.70/9.63 0.5352/0.5364
T61 2.92/2.96 0.1024/0.1024 | T65  9.73/9.67 0.5487/0.5482

Table 4: Detailed results for the best performing team (i.e.
Team56) in Text-Dependent Task-1. The last Best Results
columns show the best-achieved performance among all teams
for each sub-condition.

Single System Primary System Best Results
Condition EER MinDCF EER MinDCF EER MinDCF
All 1.89 0.0587 1.52 0.0422 1.52  0.0422
Male 1.02 0.0488 0.57 0.0309 0.57 0.0309
Female 246 0.0647 2.06 0.0488 1.99 0.0488
Farsi 1.67 0.0471 1.40 0.0357 1.40 0.0357
English 2.14 0.0721 1.66 0.0495 1.60 0.0495
TC-vs-IC 2.02 0.0628 1.61 0.0452 1.61 0.0452
TC-vs-TW 0.05 0.0048 0.06 0.0049 0.01 0.0001
FA TC-vs-IC 1.73 0.0492 1.44 0.0371 1.44 0.0371

vided better performance in both evaluation metrics. All teams
except T31 and T65 outperformed the x-vector baseline. The
comparison of detection error trade-off (DET) curves between
the baselines, primary, and single systems as well as some sub-
conditions on the primary system of best performing team (i.e.,
T56) for Task-1 are illustrated in Figure 1. The definition of
the single and primary systems can be found in the challenge
evaluation plan [7].

Table 4 presents the detailed results of the best perform-
ing system on the evaluation subset with trials partitioned into
different sub-conditions. First of all, female trials appear to be
more challenging than male speaker trials. As reported in in [9],
speakers with more than one recording device were included in
the dataset. The number of female speakers with multiple de-
vices is more than male speakers, which contributes to the huge
performance gap. Also, there are more recording sessions for
female speakers which means more variations in the female tri-
als. Similar results are observed for text-independent Task-2.

Compared to that of Farsi, English trials appear to be more
challenging. The reason is twofold. Firstly, the average duration
of English phrases is 20% shorter. Secondly, Farsi is the native
language of most speakers in the dataset, and some of them have
limited English proficiency.

It is also clear from the results that by having a proper
phrase verification system it is not difficult to reject TW tri-
als which is inline with the published results [4, 15]. So, the
most important condition in the text-dependent case is rejecting
TC trials where impostors try to fool the system by uttering the
correct passphrase. One more interesting observation from the
results in Table 4 is that the single system gives a competitive
performance compared to the primary system. This indicates
that a costly and often impractical fusion of multiple subsys-
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Figure 2: DET curves of the best performing team for Text-
Independent Task-2.

tems might be unnecessary for practical applications.

4.3. Results on Text-Independent Task-2

In the text-independent Task-2, 63 teams registered for the chal-
lenge, and 34 teams submitted their final scores at the end of
the evaluation phase. Table 5 shows the results of all primary
systems on Task-2 in terms of EER and MinDCF. Except for
T63 and T12, all other teams were able to achieve better per-
formance in all evaluation metrics than our x-vector baseline
BO1. Like in Task-1, all systems demonstrated consistent per-
formances across the progress and evaluation subsets. It is
worth noticing that the results of top teams show a considerable
improvement compared to the baseline.

The DET plots for the baseline system and the primary sys-
tem as well as the single system of the best performing team
(T37) on Task-2 is shown in Figure 2. The DET plots for sub-
conditions for the best primary system are also presented in the
same plot.

Table 6 reports detailed results of the best-performing team
for Task-2 based on different sub-conditions. First of all, similar
to Task-1, the performance on male trials is better than female
trials due to the mentioned reasons though the difference is not
as much compared to Task-1. It seems more enrollment data
(possibly from several sessions) reduces the variation effects.
The last row of Table 6 shows the results of text-dependent tri-
als which are a subset of Task-1’s trials and should be com-
pared with the last row of Table 4. It is obvious that using a
specially designed pipeline for the text-dependent task achieves
better performance. This has happened while the difficult trial-
type TW was eliminated from this comparison because text-
independent systems totally failed to reject this kind of trial.

Comparing the results of the typical text-independent
speaker verification for Farsi (i.e. fourth row) with cross-
language results between Farsi and English shows that speaking
in different languages how much affect the performance of the
speaker verification. This has happened while the test data for
the cross-lingual case is highly accented English (most of the
participants speak English like Farsi).

Finally, by comparing the Farsi results of Task-2 (i.e. fourth
row) with equivalent results on Task-1 (i.e. fourth row) it is
clear that the text-independent performance is better than text-
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Table 5:  Results of Text-Independent Task-2. Results are
shown in Progress | Evaluation format and sorted based on the
MinDCF2.0L  on Evaluation set.

IDs EER[%] MinDCEZ2:%%, \IDs EER[%]  MinDCF2:%%,
T37 1.45/1.45 0.0654/0.0651 | T0O4  4.46/4.45 0.1942/0.1945
T35 1.51/1.50 0.0745/0.0740 | T11  4.46/4.46 0.2020/0.2014
T41 1.77/1.74 0.0770/0.0765 | TOl  3.96/3.95 0.2078/0.2073
T64 1.84/1.83 0.0839/0.0836 | T21  5.55/5.55 0.2352/0.2361
TO5 2.00/2.00 0.0957/0.0951 | T19 5.69/5.67 0.2369/0.2374
T10 2.32/2.32 0.1048/0.1051 | TS5 5.72/5.70 0.2530/0.2533
T48 2.68/2.69 0.1122/0.1118 | T24  5.98/5.96 0.2638/0.2646
T34 2.74/2.73 0.1171/0.1178 | T23  6.61/6.60 0.2679/0.2680
T49 2.85/2.84 0.1252/0.1246 | T60  7.13/7.13 0.3074/0.3066
T16 3.07/3.05 0.1263/0.1256 | T14  9.04/9.05 0.3378/0.3388
T42 2.89/2.88 0.1264/0.1261 | TO8  8.48/8.48 0.3398/0.3405
T45 2.95/2.93 0.1262/0.1263 | T22  8.20/8.21 0.3548/0.3545
T56 2.71/2.70 0.1317/0.1326 | T31 10.04/10.03 0.4194/0.4199
T27 3.03/3.01 0.1377/0.1372 | T65 10.60/10.62 0.4287/0.4280
T43 3.67/3.68 0.1576/0.1573 | BO1 10.67/10.67 0.4319/0.4324
T61 3.95/3.93 0.1643/0.1646 | T63 16.24/16.26 0.4785/0.4794
T18 4.47/4.48 0.1885/0.1889 | T12 22.16/22.16 0.8929/0.8936
T06 4.66/4.62 0.1918/0.1922

Table 6: Detailed results for the best performing team in Task-
2 (i.e. Team37). “FA TC-vs-IC” is text-dependent trials from
Task-1 for Farsi TC-vs-IC condition.

Single System Primary System Best Results
Condition EER MinDCF EER MinDCF EER MinDCF
All 1.63 0.0742 1.45 0.0651 1.45 0.0651
Male 1.17 0.0630 1.00 0.0550 0.98 0.0530
Female 1.88 0.0800 1.70 0.0701 1.70  0.0701
Farsi 1.12 0.0509 1.01 0.0443 1.01 0.0443
English Cross 2.03 0.0958 1.77  0.0830 1.77 0.0830
FA TC-vs-IC  2.19 0.0809 1.94 0.0705 1.82 0.0680

dependent if there is enough enrollment data. Note that this has
happened while there are almost seven times more enrollment
data in Task-2. So, we can say for limited enrollment data, text-
dependent case outperforms text-independent and by increasing
the enrollment data we can expect comparable performance for
text-independent methods.

5. Conclusions

In this work, we presented separately the results on text-
dependent and text-independent speaker verification tasks of the
recently held Short-duration Speaker Verification (SdSV) Chal-
lenge 2020. We also summarized and discussed the reported
challenge results and provided detailed results of the best per-
forming teams on both tasks. More than 50% of the participat-
ing teams’ provided systems were able to outperform the base-
lines for both tasks. One of the captivating observations from
this evaluation was that the performance gap between the single
and primary fused systems is very narrow, which implies that
reliable and competitive text-dependent and text-independent
speaker verification systems can be built without applying any
fusion strategies.
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