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Abstract
Recently, the pipeline consisting of an x-vector speaker embed-
ding front-end and a Probabilistic Linear Discriminant Anal-
ysis (PLDA) back-end has achieved state-of-the-art results in
text-independent speaker verification. In this paper, we further
improve the performance of x-vector and PLDA based system
for text-dependent speaker verification by exploring the choice
of layer to produce embedding and modifying the back-end
training strategies. In particular, we probe that x-vector based
embeddings, specifically the standard deviation statistics in the
pooling layer, contain the information related to both speaker
characteristics and spoken content. Accordingly, we modify the
back-end training labels by utilizing both of the speaker-id and
phrase-id. A correlation-alignment-based PLDA adaptation is
also adopted to make use of the text-independent labeled data
during back-end training. Experimental results on the SDSVC
2020 dataset show that our proposed methods achieve signifi-
cant performance improvement compared with the x-vector and
HMM based i-vector baselines.
Index Terms: speech verification, x-vector, PLDA, SDSVC
2020, short utterance

1. Introduction
Speaker verification (SV) is to determine whether two speech
recordings are spoken by the same speaker or not. There are
two categories of speaker verification systems: text-dependent
speaker verification (TD-SV) and text-independent speaker ver-
ification (TI-SV). Compared with TD-SV, TI-SV is a process of
verifying the identity without constraint on the speech content.

Fostered primarily by the NIST Speaker Recognition Eval-
uation challenge, most of this research have focused on the TI-
SV task. There are two main approaches, namely i-vector [1]
and x-vector [2, 3], used to produce speaker embedding. Both
of them represent speech utterance by a low-dimensional fixed-
length vector. Prior studies have found that x-vector leverage
large-scale training datasets better than i-vector[2, 3]. In ad-
dition, the back-end similarity measurement plays an impor-
tant role. For the x-vector based system with softmax loss, the
PLDA back-end tends to outperform the cosine similarity back-
end [4] since the softmax loss is not discriminative enough to
optimize the embedding similarity [5, 6]. Recently, researchers
also revealed that x-vectors contain the lexical content informa-
tion in softmax-trained model[7]. Thus, the backend is crucial
to deal with the phoneme-invariant problem in TI-SV.

Nowadays, due to the popularity of intelligent personal as-
sistants, such as Siri, Alexa and Cortana, researchers have be-
gun to pay more attention on TD-SV in which both the speaker
and phrase are verified. Although it can be divided into two
sub-tasks, a TI-SV system to identity the speaker and an auto-
matic speech recognition (ASR) system to verify the phrase, it
is laborious and complicated to build an ASR system, especially
when the source language is low-resource.

In this paper, we mainly investigate one-pass approaches for
x-vector and PLDA based TD-SV where speakers pronounce
fixed pass-phrases to authenticate. The system produces one
log-likelihood ratio (LLR) score that used to verify both of the
speaker and phrase, without building an ASR system. We eval-
uated our systems on the text-dependent task of Short-duration
Speaker Verification Challenge (SDSVC) 2020 [8]. The main
contributions of this paper are summarized as follows:

• We analyzed the structure of neural network and investi-
gated the optimal layer used to produce speaker embed-
dings. We found that the standard deviation part in the
statistics pooling layer contains more content informa-
tion than the first dense layer in segment-level.

• Inspired by the fact that x-vector based system is sen-
sitive to the back-end model and the x-vector based
embeddings also contain information about content,
we simply modified the back-end training labels from
speaker labels into mixture labels of speaker and phrase,
and achieved promising result.

• Correlation alignment (CORAL) [9] is a method that
aligns the distributions of out-of-domain and in-domain
features in an unsupervised way. A CORAL based
PLDA adaptation is employed to make use of the text-
independent labeled data during back-end training, fur-
ther improving the performance.

The rest of this paper is organized as follows. In Section
2, we review the related works on SV. The methodology are
introduced in Section 3. Experimental setup and results will be
given in Section 4. Finally, we draw a conclusion in Section 5.

2. Related Works
2.1. Research about text-dependent speaker verification

As far as we know, HMM based i-vector method achieves state-
of-the-art performance in TD-SV task [10, 11]. In this method,
Viterbi algorithm is adopted to obtain the phoneme information.
In contrast to the conventional GMM based i-vector, which uses
GMM for aligning the frames to Gaussian components, mono-
phone HMMs are used for alignment and then computes the
statistics.

In addition, deep speaker embeddings based methods are
also proposed in TD-SV task. However, most of these systems
are customized for specials keyword , such as ”OK Google”
[12] and ”ni hao, mi ya” [13]. It does not take the Target-Wrong
(TW) trial into account where the target speaker utters a wrong
pass-phrase on the evaluation dataset.

2.2. The basic architecture of x-vector
Figure 1 depicts the basic architecture of DNN in the x-vector
based system. In this system, the network consists of layers
that extract speech characteristics at the frame-level, a statis-
tics pooling layer that aggregates variable-length features to a
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fixed-dimensional vector, additional layers that operate at the
segment-level, and finally a softmax output layer.

It has been shown that shallow TDNN is under-fitting when
large-scale training data is available [14]. Various deeper neural
network structures, such as extended TDNN (ETDNN)[15] and
factorized TDNN (FTDNN) [16], are proposed to address this
problem. There are some common designs shared across these
models. First of all, most of the architectures use the statistics
pooling layer. This layer, namely layer Lp in Figure 1, receives
the output of the final frame-level layer as input, computes its
mean and standard deviation, and then concatenates them to-
gether. Secondly, the dimension of the final frame-level layer is
commonly higher compared with other TDNN and dense layers,
except the presoftmax layer. Last but not least, a low-dimension
layer Lx, as shown in Figure 1, is used to extract the speaker
embeddings in most of TI-SV systems[2, 3].

Figure 1: The basic architecture of DNN in the x-vector system.

3. Methodology

3.1. Overview

The proposed x-vector and PLDA based system for TD-SV have
a similar calculation pipeline used in [2] for TI-SV. It can be di-
vided into two parts, a DNN to produce embeddings that repre-
sent the information of speaker and phrase, followed by a back-
end model to compare pairs of embeddings. We make several
changes to the entire framework, constituting the main contribu-
tions of our work. In particular, we first investigate the optimal
layer used to produce embeddings. We then modify the back-
end training strategy accordingly. In addition, a correlation-
alignment-based PLDA adaptation is employed to make use of
the text-independent labeled data during back-end training, fur-
ther improving the performance.

3.2. Acoustic features

The acoustic features are 40 dimensional filterbank (Fbank) co-
efficients with a frame-length of 25ms that are mean-normalized
over a sliding window of up to 3 seconds. A frame-level energy-
based VAD is employed to filter out non-speech frames.

3.3. Neural network architecture

To evaluate the effectiveness of our proposed strategies in this
paper, two x-vector based neural network architectures, namely
ETDNN and SpecAug-FTDNN-LSTM, were used in our exper-
iments.

ETDNN: Compared to standard TDNN, the ETDNN archi-
tecture has a wider temporal context with interleaving dense and
convolution layers in the frame-level layers. We used it as the
x-vector baseline. The structure of ETDNN system is depicted
in Table 1.

SpecAug-FTDNN-LSTM: This system consists of the ar-
chitecture of SpecAugment, FTDNN and LSTM, as depicted in
Table 2. SpecAugment is a newly proposed on-the-fly data aug-
mentation and it showed very promising results in speech recog-
nition [17]. FTDNN factorizes the weight matrix of TDNN
layer into two low-rank matrices and the first matrice is con-
strained to be semi-orthogonal. Skip connections between the
low-rank interior layers are created to reduce the risk of gradient
vanishing. LSTM layers, with a delay of 3 frames, are inserted
after the FTDNN layers to capture the long-range dependencies
in speech. Different from ETDNN system, the dimension of the
final frame-level layer is up to 2048.

We used Kaldi [18] to train these systems, with a mini-batch
size of 128, an initial learning rate of 0.001 and a final learning
rate of 0.0001 for 6 epochs.

Table 1: The structure of ETDNN system.

Layer Layer Type Context Size
1 TDNN-ReLU-BN t-2:t+2 512
2 Dense-ReLU-BN t 512
3 TDNN-ReLU-BN t-2,t,t+2 512
4 Dense-ReLU-BN t 512
5 TDNN-ReLU-BN t-3,t,t+3 512
6 Dense-ReLU-BN t 512
7 TDNN-ReLU-BN t-4,t,t+4 512
8 Dense-ReLU-BN t 512
9 Dense-ReLU-BN t 1536
10 Pooling(mean+stddev) Full-seq 2*1536
11 Dense-ReLU-BN 512
12 Dense-ReLU-BN 512
13 Dense-Softmax Num.spks.

Table 2: The structure of SpecAug-FTDNN-LSTM system.

Layer Layer Type Context
Factor 1

Context
Factor 2

Skip Conn.
from Layer Size Inner

Size
1 BN-SpecAug t 40
2 TDNN-ReLU-BN t-2:t+2 512
3 FTDNN-ReLU-BN t-2,t t,t+2 1024 256
4 FTDNN-ReLU-BN t t 1024 256
5 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
6 FTDNN-ReLU-BN t t 3 1024 256
7 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
8 FTDNN-ReLU-BN t t 2,4 1024 256
9 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
10 FTDNN-ReLU-BN t t 4,6,8 1024 256
11 LSTM t 1024
12 LSTM t 1024
13 Dense-ReLU-BN t 2048
14 Pooling(mean+stddev) Full-seq 2*2048
15 Dense-ReLU-BN 512
16 Dense-ReLU-BN 512
17 Dense-Softmax Num.spks.

3.4. Embeddings representation

Although phoneme information in the embedding is useless and
even degrades the performance of TI-SV system, it plays an im-
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portant role in TD-SV system. As Figure 1 shows, based on a
large amount of data, this network is trained to distinguish be-
tween speakers in the training set. The TDNN layers in frame-
level focus on local feature extraction. The statistics pooling
layer aggregates the high-level feature to a fixed-dimensional
vector. The segment-level layers is used to capture speaker char-
acteristics and eliminating irrelevant information. Therefore,
the closer to the output layer, the less phoneme information.

Since it is also important to capture speaker characteristics
over the entire utterance, we do not consider the frame-level
layer to extract embeddings. We focus on the statistics pooling
layer and the first dense layer in segment-level. There are four
kinds of embeddings used in our experiment.

emb-xvector: Embeddings are extracted at layer Lx, be-
fore the nonlinearity.

emb-pool: Embeddings are extracted at statistics pooling
layer, consist of the mean and standard deviation statistics of
the output of layer Lh .

emb-mean: Embeddings are extracted using hmean , the
mean statistics of the output of layer Lh .

emb-stddev: Embeddings are extracted using hstdddev , the
standard deviation statistics of the output of layer Lh .

We evaluate emb-mean and emb-stddev respectively for
two reasons. On the one hand, the mean statistics are difficult
to make use of high-order information compared with standard
deviation. On the other hand, the back-end models, including
LDA and PLDA, generally assume that the distributions of em-
beddings are homogeneous Gaussian in the latent space. When
we concatenate the statistics, it may fall into the problem of
non-homogeneity and non-Gaussianality [19].

3.5. Back-end training strategy

We first train the back-end models using text-dependent dataset.
After extracting the embedding as mentioned above, a simple
yet effective operation is to modify the training labels of LDA
and PLDA models. While the TI-SV system only uses the
speaker tag as labels, our TD-SV system generates the news
labels by combining both of the speaker tag and phrase tag,
namely different phrases from the same speaker are considered
as different labels.

In our experiment, we use a subset of Deepmine training
set, totally about 863 speaker with a fixed set of ten different
phrases, to train the back-end models. There are 8630 classes of
the back-end training data after modification. Similar to [2], the
embeddings are centered, dimensionality reduced using LDA
and length normalized. We adjust the output dimension of LDA
based on the results of the development set.

Figure 2: Flow Diagram of PLDA Adaptation

3.6. PLDA Adaptation

It is well known that the performance of SV system benefits
from large-scale in-domain data. However, it would be pro-
hibitively expensive to collect large amount of in-domain data
for every application, especially for TD-SV task. Nowadays,
large amount of text-independent data, such as VoxCeleb, are
public and available. In this section, we propose a PLDA adap-
tation method that use both of TI-SV and TD-SV labeled data.

As shown in Figure 2, the vital components of our back-
end model include CORAL transform and PLDA interpola-
tion. During training, the embeddings extracted from the TI-
SV and TD-SV training set are centered respectively and two
LDA models are trained. While the model with TI-SV data
only makes use of the speaker label, the other one with TD-
SV data utilizes both of the speaker and phrase label using the
strategy described in section 3.5. The CORAL is used to min-
imize the covariance distance between the TI-SV and TD-SV
data by whitening and re-coloring. We use the CORAL trans-
formed vectors to train the PLDA. Finally, the adaptive PLDA
is achieved by linearly interpolating the TI-SV covariance with
the TD-SV covariance. For the CORAL transformation, it can
be described as following equations:

Cti = cov(Dti) + eye(size(Dti, 2)) (1)
Ctd = cov(Dtd) + eye(size(Dtd, 2)) (2)

D′ti = Dti ∗ C−1/2
ti ∗ C1/2

td (3)

Where Dti and Dtd are the length normalized (LN) vectors
after LDA projection. D′ti is the CORAL transformed vector
of TI-SV dataset.

During test, the embeddings are centered and dimensional-
ity reduced using the model trained from TD-SV data.

4. Experiment
4.1. Training data

Our experiments are based on the text-dependent task of
SDSVC 2020. The training data consists of Voxceleb1 [20],
Voxceleb2 [21] and the training partition of DeepMine dataset
[22].

To assess the performance of our proposed back-end train-
ing strategy, we only used Voxceleb1 and Voxceleb2 (totally
1,108,467 utterances from 7,363 speakers) to train the front-
end extractors, since the DeepMine training set are considered
as in-domain data. The data augmentation techniques described
in [3] are applied.

To train the back-end models, we used Voxceleb1, Vox-
celeb2 and DeepMine training set. The Voxceleb datasets are
considered as TI-SV labeled dataset and used for the adaptation
of PLDA. DeepMine training set is a TD-SV labeled data that
contains 963 speakers with a fixed set of ten Persian phrases,
which is similar to Part1 of the RedDots [23]. We splited the
DeepMine training set into two parts, with 863 speakers (89,801
utterances) as training set and 100 speakers (11,262 utterances)
as development set for tuning parameters.

4.2. Evaluation

System performance is assessed on the evaluation of SDSVC
2020. The evaluation set is also drawn from DeepMine dataset
with a fixed set of ten phrases, but it consists of five Persian and
five English phrases. For each trial, model enrollment is done
in a phrase and language-dependent way using three utterances.

The performance is reported in terms of equal error rate
(EER) and the normalized detection cost function (MinDCF) as
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defined in SRE08 with Cmiss = 10, CFalseAlarm = 1 and
PTarget = 0.01 .

In addition, the score distribution is shown with Boxplot.
Four kinds of trials, namely Imposter-Wrong(IW), Imposter-
Correct(IC), Target-Wrong(TW), and Target-Correct(TC) are
reported respectively [11].

Table 3: The results (EER (%) / MinDCF) of ETDNN and
SpecAug-FTDNN-LSTM with cosine similarity measurement on
the evaluation set.

Embedding ETDNN SpecAug-FTDNN-LSTM
emb-xvector 15.86 / 0.8490 14.84 / 0.8245
emb-mean 13.15 / 0.5772 14.01 / 0.6010
emb-pool 10.71 / 0.5124 11.06 / 0.5101
emb-stddev 10.05 / 0.5033 9.84 / 0.4738

Table 4: The results (EER (%) / MinDCF) of ETDNN with
PLDA back-end on the evaluation set.

Embedding original modified adaption
emb-xvector 11.02 / 0.6507 2.73 / 0.1405 2.60 / 0.1318
emb-mean – 2.58 / 0.1124 2.49 / 0.1085
emb-pool – 2.48 / 0.1032 2.41 / 0.0982
emb-stddev – 2.15 / 0.0884 2.11 / 0.0856

Table 5: The results (EER (%) / MinDCF) of SpecAug-FTDNN-
LSTM with PLDA back-end on the evaluation set.

Embedding original modified adaption
emb-xvector 11.27 / 0.6682 2.53 / 0.1333 2.43 / 0.1258
emb-mean – 2.37 / 0.0956 2.28 / 0.0908
emb-pool – 2.39 / 0.0953 2.28 / 0.0884
emb-stddev – 1.98 / 0.0743 1.93 / 0.0714

Table 6: The SDSVC baselines and the results of SpecAug-
FTDNN-LSTM system on the evaluation set.

System EER(%) MinDCF
SDSVC x-vector baseline 9.05 0.5290
SDSVC i-vector/HMM baseline 3.49 0.1464
SpecAug-FTDNN-LSTM(our) 1.72 0.0625

4.3. Experimental setup and results

We first compared the embedded layers used to produce embed-
dings using cosine similarity measurement. The embeddings
were centered and normalized, and then the inner dot products
were computed. As shown in Table 3, it achieved the best re-
sults for both MinDCF and EER by using the standard devi-
ation statistics as embeddings for both ETDNN and SpecAug-
FTDNN-LSTM systems. The mean statistics with less discrimi-
nation even degraded the performance of statistics pooling layer
based systems. Figure 3 depicts the score distributions with co-
sine similarity measurement in ETDNN system. It is shown
that Imposter-Correct trials with consistent pass-phrases tended
to achieve higher scores compared with Imposter-Wrong trials,
especially using the standard deviation statistics as embeddings.
Therefore, the standard deviation statistics contain more content
information than the first dense layer in segment-level.

We then evaluated the proposed approach that modifying
the back-end training labels and the strategy of PLDA adaption.
The dimension of LDA projection was set to 512 for all the sys-
tems in Table 4 and Table 5. As shown in the first line of Table
4, three systems used the same DNN extractor namely ETDNN
and the embeddings were extracted using emb-xvector layer.
With different back-end training labels, the modified pipeline
significantly outperforms the original one. Figure 4 depicts the

Figure 3: Boxplot of score distributions with cosine similarity
measurement in the development set using ETDNN system.

Figure 4: Boxplot of score distributions with PLDA back-end in
the development set using ETDNN system.

score distributions with PLDA back-end in ETDNN system.
Our proposed approach obviously increased the gap between
the Target-Correct and Target-Wrong trials, making them to be
better distinguished. Table 4 and Table 5 also summarize the
performance of PLDA adaption as described in section 3.6. As
can be seen, the PLDA adaptation achieved better performance
in four kinds of embeddings in both ETDNN and SpecAug-
FTDNN-LSTM systems.

Finally, we compared our SpecAug-FTDNN-LSTM system
with the SDSVC baselines [8] on the evaluation set. As shown
in Table 6, the performance of SpecAug-FTDNN-LSTM sys-
tem is further improved by increasing the dimension of LDA
projection to 1500. Overall, our best single system significantly
outperforms both x-vector and HMM based i-vector baselines,
reducing the EER about 81% and 51% respectively, and the
MinDCF about 88% and 57% respectively.

5. Conclusion
In this paper, we investigated the pipeline based on x-vector
and PLDA for short-duration text-dependent speaker verifica-
tion. Our findings are:

• The statistics pooling layer, especially the standard devi-
ation statistics, contains more content information than
the first dense layer in segment-level.

• Back-end models are important for text-dependent
speaker verification system. It is useful to extend
the labels from speaker-id to a mixture of speaker-id
and phrase-id, namely different phrases from the same
speaker are considered as different labels.

• Correlation alignment based adaptation enable the text-
dependent speaker verification system to make better use
of text-independent labeled data.

• The result of SpecAug-FTDNN-LSTM system outper-
forms the ETDNN and HMM based i-vector systems sig-
nificantly.

For reasons of space, we only reported the single system
that used the out-of-domain dataset to train the DNN extractors.
Our submission to the challenge showed that the performance
could be further improved by using deeper neural network and
combining the DeepMine dataset during training[24].
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