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Abstract
Automatic spoken language assessment (SLA) is a challenging
problem due to the large variations in learner speech combined
with limited resources. These issues are even more problem-
atic when considering children learning a language, with higher
levels of acoustic and lexical variability, and of code-switching
compared to adult data. This paper describes the ALTA sys-
tem for the INTERSPEECH 2020 Shared Task on Automatic
Speech Recognition for Non-Native Children’s Speech. The
data for this task consists of examination recordings of Italian
school children aged 9-16, ranging in ability from minimal, to
basic, to limited but effective command of spoken English. A
variety of systems were developed using the limited training
data available, 49 hours. State-of-the-art acoustic models and
language models were evaluated, including a diversity of lexical
representations, handling code-switching and learner pronunci-
ation errors, and grade specific models. The best single system
achieved a word error rate (WER) of 16.9% on the evaluation
data. By combining multiple diverse systems, including both
grade independent and grade specific models, the error rate was
reduced to 15.7%. This combined system was the best perform-
ing submission for both the closed and open tasks.
Index Terms: speech recognition, children’s speech, language
learning

1. Introduction
Learners of a language need to be able to have their progress
measured to prove their capability to perform a job or study
a course, or to move to the next level. The first stage of au-
tomatic spoken language assessment (SLA) systems is auto-
matic speech recognition (ASR) to convert the learner’s speech
into a transcription that can be scored. Standard English
ASR systems struggle with understanding learner speech due
to mis-pronunciations and non-grammatical speech, which are
heavily influenced by the learner’s first language(s) and profi-
ciency level. For both adult, e.g. [1, 2, 3, 4], and children’s,
e.g. [5, 6, 7, 8, 9], SLA a few non-native English ASR sys-
tems have been successfully implemented. High performance,
however, is still a challenge, with limited labelled training data
available. This is particularly true for children’s speech where
the task difficulty is compounded by higher levels of acoustic
and lexical variability, increased code-switching, and a severe
lack of even native speech and text training data. To address
this the INTERSPEECH 2020 Shared Task on Automatic Speech
Recognition for Non-native Children’s Speech was proposed.

This paper reports on research supported by Cambridge Assess-
ment, University of Cambridge. Thanks to the families of Linlin Wang
and Yu Wang for their support and understanding during the evaluation
under the COVID-19 lockdown, especially Yvonne and Emily, YVEM.

The organisers distributed recordings of children’s English
exams collected in the Trentino region of northern Italy [10].
Two sets of manually transcribed audio training data were re-
leased; a 9 hour set collected in 2017 and a 40 hour set col-
lected in 2016 and 2018. In addition a 2 hour development set
from 2017 was provided. The evaluation was performed on a
held out set of 2.3 hours of 2017 data. A set of answers to a
written exam by some of the same children was also provided
for language model training. English, German and Italian pro-
nunciation lexicons, a Kaldi ASR recipe and a scoring script
completed the material distributed for the Shared Task. This
formed the basis of the Closed Track evaluation.

The data is taken from recordings of three sets of exams: 9-
10 year olds at CEFR [11] level A1; 12-13 year olds at level A2;
and 14-16 year olds at level B1. All levels have the same intro-
ductory questions such as ”What are your hobbies? Why?” but
A2 and B1 speakers are expected to answer with more detail.
The second part of the tests moves from a simple pizza order-
ing role play for A1 to more open ended small talk questions
at A2 to expanded role-play questions to provide freedom and
creativity to the B1 students. These difference in the questions
are reflected in the responses. The minimal English A1 speak-
ers produce very short (average 4 word) responses, whereas the
basic English A2 and limited but effective use of English B1
speakers talk a lot more, with an average 20 and 28 words, re-
spectively, measured on the development set (Dev). Similarly
the vocabulary used grows with level, from 181 unique English
words at A1 to 295 at A2 and 466 at B1 in Dev. An interesting
feature of the data is that code-switching is quite high, at 4% of
words for A2 and B1 speakers and 9% for A1 speakers. Both
Italian and German code-switching occurs, a reflection of the
linguistic make-up of the Trentino region.

This paper presents the systems developed at the ALTA In-
stitute for the Shared Task Closed Track and lessons learnt in
their creation. Section 2 describes the baseline ASR system im-
plemented. Developments to the system are presented in Sec-
tion 3 followed by the evaluation systems in Section 4 and con-
clusions.

2. Baseline ASR System
A Kaldi [12] baseline ASR recipe was distributed with the
shared task. This system used 9 hours data of the acoustic
model (AM) training data, the 2017 data, with additional lan-
guage model (LM) training data taken from 2016 written ex-
ams. The AM configuration specified was a factorised form of
time-delay neural networks (TDNNs), TDNN-F [13], trained
with lattice-free maximum mutual information (LF MMI) [14].
There were 13 TDNN-F layers of size 1024. The input features
were 40-d high-resolution MFCC, and 100-d online extracted
i-vectors provide speaker adaptation. 3-way speed perturbation
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was applied to augment the AM training data. A four-gram LM
was specified.

As the children’s speech is spontaneous it contains disflu-
encies including hesitations and partial words, and non-speech
events like laughter. They also sometimes whisper words and
code-switch into their native Italian and German. These are
all marked in detail in the 2017 data sets. Mis-pronunciations
are also marked. As part of the Kaldi recipe a pre-processing
step is run on the transcriptions prior to training. The mis-
pronunciation and whisper markers are removed and code-
switched German and Italian words tagged in the training data
are replaced by the name <unk-de>, <unk-it>, respec-
tively. If a sequence of words are tagged then they are replaced
by a single word in the transcription e.g.

@de(nord italien) → <unk-de>
@it(come si dice fa) → <unk-it>

These words are modelled by single phones in the distributed
English pronunciation lexicon as follows:

<unk-de> unk de S
<unk-it> unk it S

For the LM training the hesitations and non-speech events are
also stripped from the transcriptions.

A scoring tool was distributed to enable system develop-
ment 1. At scoring any disfluencies, non-speech events and
code-switched words are removed from the reference and hy-
pothesis. Note, Italian and German proper nouns remain. The
more detailed 2017 transcription resulted in some inconsisten-
cies with the other set. A post-processing step 2 was therefore
added to the ASR output prior to scoring: spellings were made
consistent (in particular, ”favorite”/”favourite”) and some miss
spellings corrected; foreign words that were not found in the
distributed English lexicon were removed; a few split hyphen-
ated words were rejoined. This post-processing reduced the
word error rate (WER) by about 1% absolute.

The distributed system only used the initial 9 hours of
acoustic training data and yielded a WER of 36.8% on the de-
velopment data trained on Kaldi v5.5. Using the same recipe,
an updated baseline making use of all the available AM training
data, 49 hours, and including these manual transcriptions in an
updated LM 3. This yielded an error rate of 22.7%. The break-
down by grade is given in Table 1. Interestingly the A2 speakers
have the lowest WER, possibly reflecting the differences in the
form of test used at the different grades.

Table 1: % WER of baseline system on Dev set, trained on 49
hour data set.

System % WER
A1 A2 B1 Total

Distributed 26.5 20.6 21.6 22.7
Baseline 23.4 17.4 21.8 21.2

+SpecAug 22.0 17.1 20.6 20.2
+RNNLM 21.7 16.6 18.9 19.1

+su-RNNLM 21.5 16.6 18.5 18.8

1TLT2020EvalScriptV2.pl
2The effect of the difference in the guidance was only noted late in

the system development so it was not possible to apply the corrections
during model training. Initial experiments indicated little difference in
system performance.

3LM training data: TLT16W17train and, after removing @words,
TLT1618train.norm.trn.

Based on the distributed recipe a modified version was
built. The primary difference between the systems was that
rather than using the English unknown word symbol in the
training transcription (<unk>), the closest English word in
the vocabulary was selected using alignment with simple ini-
tial PLP GMM-HMM models in HTK v3.4.1 [15]. All
code-switched words were replaced with an individual word
(<unk-de>/<unk-it>) and hesitation tags were mapped to
a single word (%HES%) and this was modelled in both the AM
and LM. Additionally minor changes were made to the net-
work configuration, with 15 TDNN-F layers and 40-dim log-
filterbank features used. Table 1 shows the impact of these
changes, reducing the WER by 1.5% absolute. For these forms
of low-resource tasks, data augmentation is a commonly used
approach. In addition to speed perturbation, SpecAugment [16]
was also applied, where time and frequency bands of the spec-
trogram are randomly masked out in training. The distributed
Kaldi implementation was used to build systems, with propor-
tion of frequency and time frames bands zeroed out set to 0.5
and 0.2 respectively. Additionally 6 CNN layers were added to
the bottom of the network. These two changes yielded a further
1% gain. Finally more complex language models were incor-
porated into the system. The 4-gram LM was interpolated with
a standard uni-directional RNNLM [17] and then with a 4 suc-
ceeding word RNNLM (suRNNLM) [18, 19] 4. 4-gram lattices
were rescored with this combined LM [20]. These two addi-
tional changes yielded a final WER of 18.8%. These systems
were treated as the baselines for further system development.

3. System Development
Four areas were investigated to further develop the baseline
ASR system presented in Table 1: the choice of lexicon and
phone unit; handling of code-switching; grade dependent mod-
els; and acoustic model diversity.

3.1. Lexicon

The lexicon distributed with the challenge is based upon the
CMU lexicon i.e. American English pronunciations. It was
compared to two additional forms of lexicon. The first, Com-
bilex [21] Received Pronunciation (RP) lexicon contains British
English pronunciations. From Table 2, using the Baseline sys-
tem in Table 1 degraded system performance compared to the
CMU lexicon. This indicates that the American English pro-
nunciations from the CMU lexicon may be a better match to the
Italian children’s learner speech.

Table 2: Effect of lexicon on Dev set % WER.

Lexicon % WER
A1 A2 B1 Total

Distributed 23.4 17.4 21.8 21.2
Combilex 22.3 19.7 22.9 22.0
Graphemic 20.4 17.7 21.0 20.1

A graphemic lexicon has been shown to outperform a
phonetic lexicon on non-native learner ASR, particularly for
lower proficiency speakers [22]. Following [23] the graphemic
set here consists of the 26 letters of the English alphabet, 2
graphemes to model all forms of hesitations, (G00, G01),
plus 2 graphemes to model <unk-it>, (G02,G03), and

4Built with the CUED-RNNLM V1.1 toolkit [18].
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<unk-de>, (G04,G05). The result in Table 2 shows that the
graphemic lexicon system reduces the WER over the phonetic
systems, by 1.1% absolute. Only the A2 speakers score lower
with the distributed phonetic lexicon. A2 and B1 responses are
similar in length but the A2 speech has a lot fewer disfluencies.
This may be related to the nature of the exams, with A2 students
speaking more precisely and taking greater care pronouncing
words, thus being a closer match to the phonetic lexicon.

3.2. Code-switching

Although the children are being asked to speech English they
fall back on their native language occasionally, for example
when they can’t find the right word or phrase. Table 3 shows
the percentage of code-switching on a per grade level. Over
4% of words spoken by A2 and B1 speakers are marked in the
reference transcriptions as code-switched words, and over 9%
of A1 words. Whilst the majority of the code switching is into
Italian, about 1/6th of the words are German, a reflection of the
languages spoken in the Trentino region. A small proportion of
all utterances (% Utt) are entirely in a code-switched language.

Table 3: % code-switched Italian and German words and utter-
ances only containing non-English in 2017 Train and Dev data.

Grade % Words % UttItalian German All
A1 7.67 2.15 9.82 2.48
A2 4.01 0.86 4.87 2.84
B1 3.88 0.18 4.06 1.54
All 4.87 0.87 5.74 2.38

In the Shared Task code-switched words are eliminated
from the reference at scoring so precise recognition is not
needed. They do, however, need to be identified and removed
from the hypothesis to avoid insertion errors. As described in
Section 2 the distributed recipe models code-switched words as
<unk-it>/<unk-de> which can be stripped out from the
recognition hypothesis prior to scoring. The phonetic ALTA
TDNN-F system, PF1, has a 18.8% WER (Table 1) and it’s
equivalent graphemic system, GF1, a 18.1% WER.

An alternative approach was investigated where the code-
switched words were explicitly modelled in acoustic model
and language model training. Each code-switched word was
tagged with a language tag to identify them e.g. allora it,
ist de. After recognition these tagged words were removed
from the output hypothesis. The phonetic pronunciations for
these words were taken from the German and Italian lexicons
supplied with the task. To unify the phone sets all 3 lexicons
were mapped to a common X-SAMPA phone set of 75 phones.
A second mapping was then applied to map them to the CMU
English 39 phone set. This mapping was hand derived based
on the phonetic attributes of the xenophones. The Sequitur
G2P [24] 5 tool was used to produce pronunciations for words
missing from the lexicon. As for the baseline, a PLP GMM-
HMM based HTK alignment was run to align unknown words
in the transcriptions to the closest word in this extended vocab-
ulary. Graphemic pronunciations were generated in the stan-
dard fashion. Two versions of phonetic and graphemic TDNN-F
models were trained. In the first, PF2/GF2, the standard phone
sets are used. For the other, PF3/GF3, language attributes were

5https://github.com/sequitur-g2p/
sequitur-g2p.

added to the phones in the code-switched words e.g.

ist de ih;G B s;G I t;G E
tuo it t;I B u;I I o;I E

Context dependent states within each phone are tied using de-
cision trees [25]. The trees are able to ask questions related to
the language attributes, thereby, potentially tying code-switched
contexts more closely together. Different trees were observed to
have been generated. A common language model was trained
on the transcriptions including the code-switch tagged words.
Negligible differences to the overall word error were observed
for both graphemic and phonetic systems. Gains were seen in
moving from PF1/GF1 to the tagged systems on A1 and B1
speech, with decreases in WER of 0.2%-0.9%. There were rises
in WER from 0.5-0.7%, however, on A2 speech.

Table 4: Recognition statistics for the 382 code-switched words
in Dev. †Count consists of insertion of Italian or German words
plus mis-recognitions of English into Italian or German.

Sys Recognised As Del Ins†
Task

Eng It/De Error
GF1 108 30 244 4 27.2%
GF2 109 66 207 19 27.7%
PF1 137 1 244 0 34.6%
PF2 119 69 194 14 30.4%

The limited effect on the overall recognition performance is
potentially a reflection on the scoring approach adopted. Table 4
presents statistics on the development set of how the Italian and
German words were recognised. The task error measures the %
of code-switched words recognised as full English words, mir-
roring the task scoring metric which excludes unknown, partial
and foreign words. About one third of code-switched words are
mis-recognised as an English word. Note, in some cases this
is the actual word e.g. ciao occurs in the vocabulary as both
an ”English” word and with an Italian tag. The tagged models
(GF2/PF2) are better at recognising code-switched words than
the unknown models (GF1/PF1). The two graphemic models,
however, yield a very similar task error as this doesn’t affect
their rate of mis-recognition into English. In contrast, the PF1
models tend to recognise code-switched words as English rather
than unknown giving a 7% increase in task error, compared to
3% for PF2. This also shows the graphemic models for the un-
known foreign words match better.

3.3. Grade dependent models

The pronunciation and grammar of learners becomes more
native-like as they progress, they increase their vocabulary and
reduce their code-switching. As noted in the Introduction, the
exam questions asked and length and complexity of responses
varies with level, from A1’s few words to B1’s more com-
plex but equally disfluent speech. At test time the grade of the
speaker is known so it makes sense to see if tuning the acoustic
and language models to specific grades can help performance.

Two approaches to adapting the AMs to be grade dependent
were investigated. In the first, the general AMs were fine-tuned
using only data from a specific grade, or grades. The second ap-
proach used 1-of-K coding of the grade as an auxiliary feature
for the AM. The latter approach did not yield consistent gains
for any grade level, so the results presented here focus on the
fine-tuning approach. Table 5 shows the impact of fine-tuning
on the A2 and B1 grade data using both the 4-gram LM and the
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more advanced su-RNNLM. Note no gains were obtained for
the A1 grade data for either configuration. Some of the gains
seen with the 4-gram decoding are lost when suRNNLM rescor-
ing is applied.

Table 5: Fine-tuning AMs for A2 and B1. GF2 models

Grade % WER
Dep. A2 B1

4g suRNN 4g suRNN
— 17.6 16.6 19.8 18.0

A2+B1 17.6 16.1 19.0 18.0
B1 — — 18.5 17.4

Table 6 presents the effect on performance of interpolating
the grade independent 4-gram LM with a grade dependent 4-
gram LM, the interpolation weights were optimised on the de-
velopment data. No improvements are seen for A2 and B1. This
is probably due to the training data being biased to their longer
answers, particularly with the inclusion of the written data. For
A1 speakers a 0.9% drop in WER is seen. Fine-tuning and train-
ing only on the target A1 grade data were also examined for the
RNNLM and suRNNLM. Neither approach, however, yielded
gains over the grade independent LMs.

Table 6: Grade independent (GI) and dependent (GD) 4-gram
LMs. GF2 models.

Grade GI GD % WER

A1 1.00 — 21.5
0.01 0.99 20.6

A2 1.00 — 17.6
0.36 0.64 17.9

B1 1.00 — 19.8
0.26 0.74 19.9

3.4. Acoustic model diversity

System combination of complementary systems has proven
very successful in ASR [26, 27, 28]. One way to achieve
this is through acoustic model diversity. Interleaved TDNN-F
and long short-term memory (LSTM) configuration (TDNN-
F LSTM) [29, 30] systems were trained using lattice free
MMI. Table 7 shows the performance of TDNN-F and TDNN-
F LSTM models are similar. Confusion network combination
(CNC) [27] was used to combine the 2 systems which gave an
improvement of about 0.6% absolute WER.

Table 7: CNC of graphemic TDNN-F and TDNN-F LSTM sys-
tems, with modelling of code-switched words as GF2.

System A1 A2 B1 Total
TDNN-F (GF2) 19.1 16.6 18.0 18.0
TDNN-F LSTM (GL2) 19.6 17.4 18.0 18.3
GF2 ⊕ GL2 19.5 15.3 17.3 17.4

4. Evaluation Systems
During the 9 day period of the evaluation the ALTA team en-
tered the maximum 7 systems allowed for the Closed Task.
The systems all involved system combination of graphemic and

phonetic systems, and TDNN-F and TDNN-F LSTM acoustic
models. During the evaluation the only feedback available to
participants in terms of evaluation performance was the overall
WER and numbers of substitution, insertion and deletion errors.
The per grade breakdown was not available.

Table 8: Single and combined systems on Dev and Eval

System Test % WER
A1 A2 B1 Total

GF2 Dev 19.1 16.6 18.0 18.0
Eval 20.3 14.7 17.5 17.3

PF2 Dev 20.6 17.3 18.3 18.7
Eval 19.5 15.2 16.9 16.9

GF3 Dev 19.2 16.5 18.3 18.1
Eval 19.8 14.7 17.3 17.0

PF3 Dev 21.1 17.1 18.5 18.9
Eval 21.4 14.9 16.6 17.1

C1 Dev 19.2 15.0 16.5 16.9
Eval 20.2 13.8 15.5 15.9

C2 Dev 18.5 14.7 16.4 16.6
Eval 19.7 13.5 16.0 16.0

ROV(C1,C2) Dev 18.8 14.9 16.4 16.7
Eval 19.4 13.4 15.5 15.7

Table 8 shows the best single systems and combined sys-
tems on the Dev and Eval sets. As can be seen the best Eval
system differs from the best Dev system at each grade and over-
all. The first CNC system, C1, was selected as the best grade
independent system on the Eval. It was formed by combining
all 4 unk-de/it systems with all 4 tagged v2 systems:

(GF1⊕GL1⊕PF1⊕PL1)⊕(GF2⊕GL2⊕PF2⊕PL2)
The second CNC system, C2, used grade specific combination
i.e. the best combination for each grade was used based on Dev
set results. For A1 and B1 this was the tagged systems:

(GF2⊕GL2⊕PF2⊕PL2)⊕(GF3⊕GL3⊕PF3⊕PL3)
and for A2 all 3 groups of systems were combined:

C1⊕(GF3⊕GL3⊕PF3⊕PL3)
Finally C1 and C2 were combined using ROVER [26]. This
gave small gains on A1 and A2 and matched the C1 perfor-
mance on B1, giving the lowest WER of 15.7% overall.

5. Conclusions
This paper has described the ALTA speech recognition system
for the INTERSPEECH 2020 Shared Task on Non-Native Chil-
dren’s Automatic Speech Recognition. This data is especially
challenging, as there is a more variety in children’s speech than
adult speech, limited training data, and all the standard issues
of learner English. Starting from the distributed Kaldi recipe, a
number of both practical refinements for handling ”noisy” data,
as well as algorithmic advances are presented. The final sys-
tem makes extensive use of: data augmentation, in the form
of speed perturbation and SpecAugment; lexical diversity using
both phonetic and graphemic lexicons; acoustic model diver-
sity; and final grade specific combination. The final combined
system submitted for the Closed Task yielded a word error rate
of 15.7% on the evaluation data, which was the best perform-
ing evaluation system. Additionally, the best individual system
that contributed to this combined system, gave an error rate of
16.9% on the evaluation which was also lower than any other
system submitted to the official evaluation.
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school: a corpus of non native children speech,” CoRR, vol.
abs/2001.08051, 2020, to be published Proc. LREC, 2020.
[Online]. Available: http://arxiv.org/abs/2001.08051

[11] Council of Europe, Common European Framework of Reference
for Languages: Learning, Teaching, Assessment. Cambridge
University Press, 2001.

[12] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech
Recognition Toolkit,” in Proc. of the Automatic Speech Recog-
nition and Understanding Workshop (ASRU), 2011.

[13] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmo-
hammadi, and S. Khudanpur, “Semi-orthogonal low-rank
matrix factorization for deep neural networks,” in Proc. of
INTERSPEECH, 2018, pp. 3743–3747. [Online]. Available:
https://doi.org/10.21437/Interspeech.2018-1417

[14] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for ASR based on lattice-free MMI,” in Proc. of IN-
TERSPEECH, 2016, pp. 2751–2755.

[15] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
and P. Woodland, The HTK book (for HTK version 3.4.1).
University of Cambridge, 2009. [Online]. Available: http:
//htk.eng.cam.ac.uk

[16] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data
augmentation method for automatic speech recognition,” in Proc.
of INTERSPEECH. ISCA, 2019, pp. 2613–2617. [Online].
Available: https://doi.org/10.21437/Interspeech.2019-2680

[17] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudan-
pur, “Recurrent neural network based language model,” in Proc.
of INTERSPEECH, 2010.

[18] X. Chen, X. Liu, Y. Qian, M. Gales, and P. Woodland, “CUED-
RNNLM – An Open-Source Toolkit for Efficient Training and
Evaluation of Recurrent Neural Network Lang uage Models,” in
Proc. of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2016.

[19] X. Chen, X. Liu, Y. Wang, A. Ragni, J. H. M. Wong,
and M. J. F. Gales, “Exploiting future word contexts in
neural network language models for speech recognition,”
IEEE/ACM Trans. Audio, Speech & Language Processing,
vol. 27, no. 9, pp. 1444–1454, 2019. [Online]. Available:
https://doi.org/10.1109/TASLP.2019.2922048

[20] X. Liu, X. Chen, Y. Wang, M. J. F. Gales, and P. C. Woodland,
“Two efficient lattice rescoring methods using recurrent neural
network language models,” IEEE ACM Trans. Audio Speech
Lang. Process., vol. 24, no. 8, pp. 1438–1449, 2016. [Online].
Available: https://doi.org/10.1109/TASLP.2016.2558826

[21] K. Richmond, R. A. J. Clark, and S. Fitt, “Robust LTS rules
with the combilex speech technology lexicon,” in Proc. of
INTERSPEECH, 2009, pp. 1295–1298. [Online]. Available: http:
//www.isca-speech.org/archive/interspeech 2009/i09 1295.html

[22] K. Knill, M. Gales, K. Kyriakopoulos, A. Ragni, and Y. Wang,
“Use of Graphemic Lexicons for Spoken Language Assessment,”
in Proc. of INTERSPEECH, 2017, pp. 2774–2778.

[23] M. Gales, K. Knill, and A. Ragni, “Unicode-based Graphemic
Systems for Limited Resources Languages,” in Proc. of the Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2015.

[24] M. Bisani and H. Ney, “Joint-Sequence Models for Grapheme-to-
Phoneme Conversion,” Speech Communication, vol. 50, pp. 434–
451, May 2008.

[25] S. J. Young and P. C. Woodland, “State clustering in HMM-based
continuous speech recognition,” Computer Speech and Language,
vol. 8, no. 4, pp. 369–394, 1994.

[26] J. G. Fiscus, “A post-processing system to yield reduced word
error rates: Recognizer output voting error reduction (ROVER),”
in Proc. of the Automatic Speech Recognition and Understanding
Workshop (ASRU), 1997, pp. 347–354.

[27] G. Evermann and P. C. Woodland, “Posterior probability decod-
ing, confidence estimation and system combination,” in Proc.
Speech Transcription Workshop, vol. 27, 2000, pp. 78–81.

[28] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum
Bayes risk decoding and system combination based on a
recursion for edit distance,” Computer Speech and Language,
vol. 25, no. 4, pp. 802–828, 2011. [Online]. Available:
https://doi.org/10.1016/j.csl.2011.03.001

[29] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency
acoustic modeling using temporal convolution and LSTMs,” IEEE
Signal Processing Letters, vol. 25, no. 3, pp. 373–377, 2017.

[30] Y. Wang, J. Wong, M.J.F.Gales, K. Knill, and A. Ragni, “Se-
quence teacher-student training of acoustic models for automatic
free speaking language assessment,” in Proc. of the IEEE Work-
shop on Spoken Language Technology (SLT), 2018.

259


