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Abstract
This paper describes the NTNU ASR system participating in
the Interspeech 2020 Non-Native Children’s Speech ASR Chal-
lenge supported by the SIG-CHILD group of ISCA. This ASR
shared task is made much more challenging due to the co-
existing diversity of non-native and children speaking charac-
teristics. In the setting of closed-track evaluation, all partic-
ipants were restricted to develop their systems merely based
on the speech and text corpora provided by the organizer. To
work around this under-resourced issue, we built our ASR sys-
tem on top of CNN-TDNNF-based acoustic models, meanwhile
harnessing the synergistic power of various data augmentation
strategies, including both utterance- and word-level speed per-
turbation and spectrogram augmentation, alongside a simple yet
effective data-cleansing approach. All variants of our ASR sys-
tem employed an RNN-based language model to rescore the
first-pass recognition hypotheses, which was trained solely on
the text dataset released by the organizer. Our system with
the best configuration came out in second place, resulting in
a word error rate (WER) of 17.59 %, while those of the top-
performing, second runner-up and official baseline systems are
15.67%, 18.71%, 35.09%, respectively.
Index Terms: non-native speakers, children speech, data aug-
mentation, speech recognition, the TLT-school Challenge

1. Introduction
Due to the rapid advancements in automatic speech recog-
nition (ASR) with various sophisticated deep neural network
(DNN) modeling techniques, alongside the availability of large
amounts of training data and powerful computational resources,
there has been widespread adoption of ASR solutions in many
application domains such as personal assistants, interactive
voice responses (IVR) and among others, with which people
can interact naturally with machines using their voice.

Although some current top-of-the-line ASR systems can
even reach the performance level of professional human anno-
tators in specific conditions [1, 2], many real-world application
scenarios still pose great challenges for ASR. One of the most
challenging application scenarios is recognition of non-native
children’s speech, for which two sets of intricate phenomena co-
exist, often dramatically reducing ASR performance. One is the
non-native pronunciation behaviors, including mispronounced
words, ungrammatical utterances, code-switched words, and
disfluencies. The other is the linguistic differences of children
from adult speech at many levels, including acoustic, prosodic,
lexical, morphosyntactic, and pragmatic levels, to name a few
[3]. This may also manifest in the inter- and intra-speaker vari-
ability of children due to varying vocal tract lengths and unde-
veloped pronunciation skills [4-7]. What is more, the scarcity of
publicly available large-scale non-native children’s speech data
with human annotations further hamper the ASR performance.

Figure 1: Highlight of the NTNU ASR system configuration.

This paper describes the NTNU ASR system participat-
ing in the Interspeech 2020 Non-Native Children’s Speech
ASR Challenge (TLT-school Challenge) supported by the SIG-
CHILD group of ISCA1. Due to the coexisting diversity of non-
native and children speaking characteristics, this ASR shared
task is made much more challenging. In the setting of closed-
track competition, all participants were restricted to develop
their systems solely based on the training speech and text
corpora provided by the organizer. To deal with this under-
resourced issue, we built our ASR system on the basis of a
top-of-the-line, hybrid deep neural network and hidden Markov
model (DNN-HMM) structure for acoustic modeling, with the
lattice-free maximum mutual information (LF-MMI) criterion
[8] for model optimization. More specifically, the DNN ar-
chitecture involves several layers of convolutional neural net-
work (CNN) followed by several layers of factorized time-delay
neural network (TDNNF) [9], holistically denoted by CNN-
TDNNF hereafter. In order to combat the data-sparsity and high
variability of non-native children’s speech for robust acoustic
modeling, we augmented the given training dataset with several
spectrogram- and speed perturbation-based data augmentation
strategies, including the recently proposed spectrogram aug-
mentation (denoted by SpecAugment) method [10], and both
utterance- and word-level speed perturbations [11] in the train-
ing phase. Furthermore, inspired by [5], speech feature ex-
traction was conducted with the aid of vocal tract length nor-
malization (VTLN) [12], as well as cepstral mean and variance
normalization (CMVN) [13]. Apart from the above, we capital-
ized on the so-called word pronunciation modeling [14] in place
of the conventional pronunciation modeling approach [5]. All
variants of our ASR system employed a recurrent neural net-
work (RNN)-based language model (denoted by RNNLM) to
rescore the first-pass recognition hypotheses [15], in conjunc-

1 https://sites.google.com/view/wocci/home/interspeech-2020-special-
session
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tion with a lattice combination procedure [16]; the RNNLM
model was trained solely on the text dataset provided by the or-
ganizer. The synergy of all abovementioned treatments brought
about a significant improvement over the baseline system an-
nounced by the organizer. Figure 1 outlines the configuration of
our system.

The remainder of this paper is organized as follows: Sec-
tion 2 sheds light on the strategies that were employed for train-
ing data cleansing and augmentation. Section 3 presents the
details of the acoustic modeling process. Section 4 describes
the RNN-based language model as well as the accompanying
lattice rescoring methods. After that, the experimental setup,
results and discussion are given in Section 5. We conclude the
paper and envisage future research directions in Section 6.

2. Data Cleansing and Augmentation
2.1. Data Cleansing

Hybrid DNN-HMM (e.g., CNN-TDNNF) acoustic models have
shown to be significantly superior than the conventional HMM-
based acoustic models that employ Gaussian mixture models
(GMM) to characterize the emission probabilities of frame-
level speech feature vectors being generated by each HMM
state (denoted by GMM-HMM) on many ASR tasks. Hybrid
DNN-HMM acoustic models still have to resort to GMM-HMM
acoustic models to obtain good forced-alignment information
for better estimating their corresponding neural network pa-
rameters. Therefore, the GMM-HMM acoustic model of our
best system was training with the audio segments selected out
from the speech training dataset with high recognition confi-
dence scores generated by an existing hybrid DNN-HMM sys-
tem. As we shall see later, the empirical ASR results confirm
this intuitive data-cleansing therapy.

Due to the constraint posed by the closed-track competi-
tion, viz. only the speech and text corpora provided by the or-
ganizer could be used for the ASR system development, we thus
set out to leverage different data-augmentation strategies based
on label-preserving transformations, including both utterance-
and word-level speed perturbation and spectrogram augmenta-
tion, to diversify and enrich the original speech training dataset,
apart from the aforementioned data-cleansing operation. We an-
ticipated that these data-augmentation strategies could further
push the performance limit of our ASR system.

2.2. Utterance- and Word-level Speed Perturbation

To alleviate the data-scarcity problem for acoustic modeling,
a natural thought is to perform utterance-level speed perturba-
tion [11]. It modifies the speaking rate of a speech utterance by
resampling its waveform signal. Following the procedure de-
scribed in [11], in this paper two additional copies of the origi-
nal speech training data were created by perturbing the speaking
rate of each training utterance to 0.9 times and 1.1 times of its
original one, respectively. In this way, the training data had in-
creased three-fold.

Furthermore, in initial experiments, we observed that the
word-level speech of non-native children’s utterances exhibits
high inter- and intra-speaker variabilities and thus tends to be
unstable. To capitalize on this observation, we proposed a word-
level speed perturbation method so as to make the resulting
acoustic models better accommodate the intricate pronunciation
phenomena inherent in non-native children’s speech. Word-
level speech perturbation was conducted in a two-stage man-
ner. At the first stage, word-level boundaries of the original

Figure 2: A schematic depiction of the utterance- and word-
level speed perturbation procedures.

training utterances were obtained with a baseline hybrid DNN-
HMM ASR system. At the second stage, the speaking rate of
each word segment was perturbed by randomly altering it to
0.9 times or 1.1 times of the original one. More specifically,
one copy of the training dataset had 80% of its word segments
increase their speaking rate to 1.1 times and 20% of its word
segments reduce their speaking rate to 0.9 times of the orig-
inal ones. Alternatively, another copy of the training dataset
had 20% of its word segments increase their speaking rate to
1.1 times and 80% of its word segments reduce their speak-
ing rate to 0.9 times of the original ones. To recap, the afore-
mentioned utterance- and word-level speed perturbation proce-
dures will generate four additional copies of training data, as
schematically depicted in Figure 2. Note also here that, due to
these augmentation operations will change in the lengths of the
wave signals, the forced-alignment information of the speed-
perturbed utterances were generated using the baseline hybrid
DNN-HMM system.

2.3. Spectrogram Augmentation

Another line of research on training data augmentation for ASR
acoustic modeling has focused on feature-space augmentation,
which takes inspiration from the success of augmentation meth-
ods employed in the computer vision (CV) community, many
of which augmented CV datasets by adding transformed sam-
ple instances along with their respective original labels [17-
19]. The most celebrated feature-space augmentation method
adopted for acoustic modeling is vocal tract length perturbation
(VTLP) [20]. VTLP, which employs a linear warping transfor-
mation along the frequency bins, simulates the effect of alter-
ing the vocal tract lengths of speakers that produce the training
utterances. Very recently, SpecAugment has drawn much atten-
tion from the ASR community, which treats the spectrogram of
an utterance as an image, and in turn warps it along the time
axis, mask blocks of consecutive frequency along the time axis
bins and mask the whole frequency bins in short spans of time
[10]. These operations collectively lead to considerable word
error rate reductions on several benchmark tasks. Apart from
the waveform-domain speed perturbation (viz. utterance- and
word-level speed perturbation) mentioned previously in Sec-
tion 2.2, SpecAugment was also applied to generate augmented
acoustic training data. To this end, we made use of the com-
ponent ‘spec-augment-layer’ of Kaldi toolkit [21], which con-
sists only of the operations that mask blocks of consecutive
frequency along the time axis bins and mask the whole fre-
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quency bins in short spans of time. This is probably because
warping spectrogram along the time axis is conceptually simi-
lar to waveform-domain speed perturbation, but its costs a great
amount of computation and does not get any significant im-
provement [10].

3. Acoustic Modeling
Mel-frequency cepstral coefficients (MFCC) of 40 dimensions,
spliced with i-vectors of 100 dimensions [22] were adopted as
the frame-level acoustic feature vectors to be fed to the ASR
system. VTLN and the cepstral mean and variance normal-
ization (CMVN) operation were conducted in tandem during
the feature extraction process. We also observed in our initial
experiments that performing VTLN merely on the test dataset
yielded better word error rate (WER) results than performing
VTLN on the training and test datasets jointly.

As to acoustic modeling, the DNN architecture involves
several layers of TDNNF stacking on top of several layers of
CNN [9] (cf. Section 1). TDNNF is a subsequent extension of
TDNN (time-delay neural network), with the purpose of obtain-
ing better modeling performance and meanwhile reducing the
number of parameters by factorizing the weight matrix of each
TDNN layer into the corresponding product of two low-rank
matrices [9]. It is argued that we can still retain salient informa-
tion when projecting a weight matrix from a high-dimensional
space to low-dimensional spaces by adding a semi-orthogonal
constraint to the first low-rank matrix. As an aside, we also in-
corporated skip connections [23] into TDNNF so as to deepen
the network while alleviating the vanishing gradient problem.

The objective function for training the acoustic model is
lattice-free maximum mutual information (LF-MMI) [8]:

FLFMMI =

J∑
j=1

log
P (Oj |Lj)

k ∑
i P (Lj)

P (Oj |Li)kP (Li)
(1)

Where Oj and Lj are the acoustic feature vector sequence and
the corresponding phone sequence of the j-th training utter-
ance, k is a weighting factor, and P (Lj) is the phone n-gram
language model probability. On the other hand, we use the
word-level pronunciation modeling method proposed in [14], in
substitution to that the conventional approach proposed in [5].
The former has been proved effective to distinguish multiple
word pronunciations and avoid increasing the confusability of
the vocabulary. Among other things, we observed experimen-
tally that modeling the probability of inserting silence bound-
aries for word-level pronunciations in an explicit manner could
bring about additional performance gains.

4. Language Modeling
A recurrent neural network language model (RNNLM) instan-
tiated with a forward long short-term memory (LSTM) [15] ar-
chitecture was trained on the text dataset provided by organizer.
The local training objective of RNNLM at word position l in the
text dataset is expressed by:

FRNNLM = zl + 1−
∑
i

expzi (2)

where zl denotes the logit of RNNLM at word position l. Ac-
cording to [15], this objective function can be viewed as an ap-
proximation of the conventional cross-entropy objective func-
tion, which, however, can speed up the training process (viz.

Table 1: Statistical information of TLT-school corpus.

Hours #Utterances #Speakers
Train (full) 49 13,999 340

Train (small) 32 7,370 340
Development 2 562 84

Evaluation 2 578 84

Table 2: WER (%) results on the development dataset with the
baseline acoustic models trained on the small-sized training
dataset; * indicates that the model was trained on the full train-
ing dataset instead.

Acoustic Model DC WPM WER (%)
Development Set

TDNNF - - 26.41
TDNNF 3 - 23.13

CNN-TDNNF 3 - 22.34
CNN-TDNNF 3 3 21.75

CNN-TDNNF* 3 3 21.20

the inference time) by allowing for a sampling method to ac-
celerate the training convergence. RNNLM was used for the
second-pass lattice-rescoring [15], in conjunction with a word
n-gram language model previously used in the first-pass decod-
ing. This word n-gram language model was also trained solely
on the text dataset provided by the organizer.

5. Experiments
5.1. Experimental Setup

We evaluated our approaches to low-resourced non-native chil-
dren’s English speech ASR on the TLT-school corpus [24] ,
while the baseline ASR systems was developed with the Kaldi
toolkit [25] and the recipes released by organizer. The TLT-
school corpus consists of English spoken responses collected
from Italian school students between the ages of 9 to 16. Sev-
eral intricate phenomena of non-native children’s speech, such
as mispronounced, code-switched words and linguistic differ-
ences between children and adult speech, make this task much
more challenging than before. The training set and development
set consisted of 13,999 utterances from 340 speakers, and 562
utterances from 84 speakers, respectively. In addition, the eval-
uation set was composed of 578 utterances from another set of
84 speakers. A smaller-sized training set, which was used for
quick tuning of the baseline settings. Table 1 shows some basic
statistics of the TLT-school corpus.

5.2. Data Cleansing and Pronunciation Modeling

Our first set of experiments on the development set is designed
to analytically investigate the effectiveness of data cleans-
ing (DC) and word-level pronunciation modeling (denoted by
WPM), previously proposed in Sections 3 and 4, respectively.
To this end, two disparate acoustic models, viz. TDNNF and
CNN-TDNNF trained with the small-sized training dataset, are
respectively employed as the default acoustic model. Three
noteworthy points can be drawn from Table 2. First, the ap-
plication of DC leads to a relative WER reduction of 12.4%
(cf. Rows 1 and 2) as TDNNF is used as the acoustic model.
Second, when DC is applied, CNN-TDNNF (stacking CNN
with TDNNF) can further yield a relative WER reduction of
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Table 3: WER (%) results on the development dataset with dis-
parate data-augmentation settings.

Spectrogram
Augmentation

Speed
Perturbation

WER (%)
Development Set

3 USP 19.92
3 WSP 20.57
3 USP+WSP 19.80

3 USP+WSP
18.86

(Lattice
Rescoring)

Table 4: WER (%) results of our final system on the develop-
ment and evaluation datasets, with normal supervised learning
or semi-supervised learning.

Semi-
supervised
Learning

WER (%)
Development

Set
Evaluation

Set
- 16.70 17.79
3 16.74 17.59

3.4% over that using TDNNF in isolation. Third, working in
conjunction with WPM, the performance of CNN-TDNNF the
based ASR system can be steadily improved, while using the
full training dataset (cf. the last row of Table 2) instead of the
small-sized training dataset further advances the performance.
From now on, unless otherwise stated, we will adopt the model
configuration determined in the last row of Table 2 for the fol-
lowing experiments.

5.3. Data Augmentation

In the second set of experiments, we turn to assess the im-
pacts of different combinations of data augmentation methods,
viz. spectrogram augmentation and speed perturbation (cf. Sec-
tion 2), on the TLT-school task (viz. non-native children’s En-
glish speech ASR). Note here that, for speed perturbation, either
utterance-level speed perturbation (denoted by USP) or word-
level speed perturbation (denoted by WSP), or their synergy are
used to expand the training dataset for acoustic modeling. The
corresponding results on the development are shown in Table
3. As compared to the last row of Table 2, we can find that all
different combinations of spectrogram augmentation and speed
perturbation (cf. the first three rows of Table 3) can consid-
erably boost the ASR performance, leading to a relative WER
reduction of 6.6% when with the best combination setting. This
results also confirm the merits of conducting data augmentation
for resource-scare ASR tasks, such as the TLT-school task stud-
ied in this paper. As a side note, if an additional second-pass
lattice rescoring is further applied (with a proper combination
of RNNLM and the word n-gram language model), the WER of
our system on the development set can be further decreased to
18.86%.

5.4. System Combination and Semi-supervised Learning

In the last set of experiments, we report on the results of our
final system submitted to the ASR challenge organizer. The
final system performed an ensemble of the ASR systems pre-
viously evaluated in Tables 2 and 3. Specifically, the ASR re-
sults of all the abovementioned systems, in the form of word lat-
tices, were first merged (unified) into a single word lattice with

Table 5: Final WER (%) results on the evaluation dataset for
the participating teams of the TLT-school Challenge.

Participating Teams WER (%)
ALTA Institute,

Cambridge University 15.67

SMIL Lab,
National Taiwan Normal University 17.59

Aalto University 18.71
University of Birmingham 18.80

Anonymous 19.64
Seoul National University

SLPLAB 21.63

Anonymous 22.24
Johns Hopkins University 26.38

Indian Institute of
Technology Bombay 26.61

Baseline (Organizer) 35.09

equal prior weights. We then conducted Minimum Bayes-Risk
(MBR) decoding on the merged lattice, whose outputs were
served as the results of our final ASR system. On a separate
front, since it was allowed to make use of the label-agnostic
evaluation dataset (viz. the corresponding reference transcripts
were not provided), we thus went one step further to leverage
the label-agnostic evaluation dataset for acoustic model train-
ing. That is, we conducted semi-supervised learning of the
acoustic model by additionally using the unlabeled evaluation
dataset and adopting the strategies proposed in [25] and [26]. As
we can see in Table 4, our proposed system-ensemble approach
(Row 1) can further improve the best WER results on the devel-
opment dataset from 18.86% to 16.70%. Further, with the ad-
ditional use of semi-supervised learning, though our best WER
result on the development dataset was slightly degraded from
16.70% to 16.74%, such combination of the system-ensemble
approach with semi-supervised learning achieved a WER result
17.59% on the evaluation when using our best ASR system con-
figuration. Finally, Table 5 summarizes the final WER results
of the participating teams on the evaluation dataset of the TLT-
school Challenge.

6. Conclusion
In this paper, we have presented and evaluated the NTNU ASR
system participating in the TLT-school Challenge. The promis-
ing effectiveness of the joint use of data cleansing, pronunci-
ation modeling, data augmentation, system combination and
semi-supervised learning methods for non-native children’s En-
glish speech ASR have been confirmed, through an extensive
set of experimental evaluations. As to future work, we plan
to apply and extend the aforementioned methods to more other
resource-poor ASR and computer-assisted pronunciation train-
ing (CAPT) tasks[27].

7. Acknowledgment
This research is supported in part by ASUS AICS and the Min-
istry of Science and Technology(MOST), Taiwan, under Grant
Number MOST 109-2634-F-008-006- through Pervasive Arti-
ficial Intelligence Research (PAIR) Labs, Taiwan, and Grant
Numbers MOST 108-2221-E-003-005-MY3 and MOST 109-
2221-E-003-020-MY3. Any findings and implications in the
paper do not necessarily reflect those of the sponsors.

248



8. References
[1] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dimi-

triadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L. Lim, B. Roomi,
and P. Hall, “English conversational telephone speech recognition
by humans and machines,” in Proc. Interspeech, pp. 132–136, 2017.

[2] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,
“The microsoft 2017 conversational speech recognition system,” in
Proc. International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5934–5938, 2018.

[3] A. Potamianos, S. Narayanan, and S. Lee, “Automatic speech
recognition for children,” in Proc. European Conference on
Speech Communication and Technology (EUROSPEECH), pp.
2371–2734, 1997.

[4] M. Qian, I. McLoughlin, W. Quo, and L. Dai, “Mismatched
training data enhancement for automatic recognition of children’s
speech using DNN-HMM,” in Proc. International Symposium on
Chinese Spoken Language Processing (ISCSLP), pp. 1–5, 2016.

[5] P. G. Shivakumar, A. Potamianos, S. Lee, and S. Narayanan, “Im-
proving speech recognition for children using acoustic adaptation
and pronunciation modeling,” in Proc. Workshop on Child Com-
puter Interaction (WOCCI), pp. 15-19, 2014.

[6] H. Liao, G. Pundak, O. Siohan, M. Carroll, N. Coccaro, Q.-M.
Jiang, T. N. Sainath, A. Senior, F. Beaufays, and M. Bacchiani,
“Large vocabulary automatic speech recognition for children,” in
Proc. Interspeech, pp. 1611–1615, 2015.

[7] P. G. Shivakumar and P. Georgiou, “Transfer learning from adult to
children for speech recognition: Evaluation, analysis and recom-
mendations,” in arXiv, 2018.

[8] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X.
Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neural
networks for ASR based on lattice-free mmi,” in Proc. Interspeech,
pp. 2751–2755, 2016.

[9] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi,
and S. Khudanpur, “Semi-orthogonal low-rank matrix factorization
for deep neural networks,” in Proc. Interspeech, pp. 3743–3747,
2018.

[10] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method
for automatic speech recognition,” in Proc. Interspeech, pp. 2613-
2617, 2019.

[11] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Proc. Interspeech, pp. 3586-3589,
2015.

[12] T. Claes, I. Dologlou, L. ten Bosch, D. V. Compernolle, “A novel
features transformation for vocal tract length normalization in au-
tomatic speech recognition”, IEEE Trans. on Speech and Audio
Processing, vol. 6, no. 6, pp. 549-557, 1998.

[13] O. M. Strand and A. Egeberg, “Cepstral mean and variance nor-
malization in the model domain,” in Proc. ISCA Tutorial and Re-
search Workshop (ITRW), pp. 38, 2004.

[14] G. Chen, H. Xu, M. Wu, D. Povey, and S. Khudanpur, “Pronun-
ciation and silence probability modeling for ASR,” in Proc. Inter-
speech, pp. 533-537, 2015.

[15] H. Xu, K. Li, Y. Wang, J. Wang, S. Kang, X. Chen, D. Povey,
and S. Khudanpur, “Neural network language modeling with
letter-based features and importance sampling,” in Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6109–6113, 2018.

[16] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum bayes risk
decoding and system combination based on a recursion for edit
distance,” Computer Speech and Language, vol. 25, no. 4, pp.
802–828, 2011.

[17] T. DeVries and G. Taylor, ”Improved regularization of convolu-
tional neural networks with cutout,” in arXiv, 2017.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”ImageNet classi-
fication with deep convolutional neural networks,” in Proc. Neural
Information Processing Systems (NIPS), pp. 1106–1114, 2012.

[19] M. Jaderberg, K. Simonyan, and A. Zisserman, ”Spatial trans-
former networks,” in Proc. Neural Information Processing Systems
(NIPS), pp. 2017-2025, 2015.

[20] N. Jaitly and G. E Hinton, “Vocal tract length perturbation (VTLP)
improves speech recognition,” in Proc. the International Confer-
ence on Machine Learning (ICML) Workshop on Deep Learning
for Audio, Speech, and Language Processing, 2013.

[21] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N.
Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
G. Stemmer, K. Vesely, “The kaldi speech recognition toolkit,” in
Proc. Automatic Speech Recognition and Understanding (ASRU),
2011.

[22] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans.
on Audio, Speech, and Language Processing, vol. 19, no. 4, pp.
788–798, 2011.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. Computer Vision and Pattern Recog-
nition (CVPR), pp. 770–778, 2016.

[24] R. Gretter, M. Matassoni, S. Bannò, and D. Falavigna, “TLT-
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