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Abstract
We present the beta version of ASE (the Automatic Sound En-
gineer), a NELE (Near End Listening Enhancement) algorithm
based on audio engineering knowledge. Generations of sound
engineers have improved the intelligibility of speech against
competing sounds and reverberation, while maintaining high
sound quality and artistic integrity (e.g., audio track mixing in
music and movies). We try to grasp the essential aspects of
this expert knowledge and apply it to the more mundane con-
text of speech playback in realistic noise. The algorithm de-
scribed here was entered into the Hurricane Challenge 2.0, an
evaluation of NELE algorithms. Results from those listening
tests across three languages show the potential of our approach,
which achieved improvements of over 7 dB EIC (Equivalent In-
tensity Change), corresponding to an absolute increase of 58%
WAR (Word Accuracy Rate).
Index Terms: speech modifications, Near End Listening En-
hancement, sound engineering

1. Introduction
Speech communication via electronic devices is ever-present in
our daily lives. Besides traditional devices like TV and radio,
new means of communication - like videoconferencing - are fo-
cusing our attention on the issue of speech intelligibility, par-
ticularly when this is delivered through loudspeakers. In this
scenario, NELE (Near End Listening Enhancement) is a useful
tool for facilitating communication. In contrast to speech en-
hancement, which recovers speech from a noisy mixture, NELE
modifies the clean signal before it is played back, with a view
to the subsequent communication channel disturbances that will
affect it (e.g., noise and reverberation).

Different approaches to NELE have been pursued over the
past two decades; a range of algorithms is described in [1]. A
common strategy is to modify speech in ways that mimic the
natural changes humans make when they speak in noise: e.g.,
articulating words more carefully, hence increasing the conso-
nant/vowel ratio; boosting the energy in the higher part of the
spectrum, hence making formants more pronounced [2]).

In our previous study on the efficacy of NELE techniques
[3] we evaluated three state-of-the-art algorithms in simulated
real-world environments. Based on the insights we gained from
that study, we created the beta version of ASE (the Automatic
Sound Engineer), the NELE algorithm we submitted to the Hur-
ricane Challenge 2.0 [4].

1.1. Motivation for our approach

While the scientific community is engaged in a fine-grained
analysis of the various factors that influence intelligibility, a
more immediate and holistic approach is adopted by the enter-
tainment industry. The objectives of NELE - delivering the hu-
man voice clearly against competing sounds and reverberation
– has been the focus of sound engineers ever since there has

been such a profession. Whilst making choices driven by artis-
tic intent, engineers typically adopt strategies with a scientific
basis. For example, DRC (Dynamic Range Compression) atten-
uates the parts of the speech where energy is abundant, while
amplifying those that are too quiet to be audible. This process
improves the consonant/vowel ratio, as most of the energy in
speech signals is found in the vowels. As another example, a
pre-emphasis filter is used to boost energy in that part of the
spectrum most significant for speech intelligibility: F1 and F2
are typically found in the 300-2200 Hz range, and consonants
even higher than that [5]; however, most of the energy in speech
recordings typically resides around F0, i.e., 60-400 Hz.

Sound engineers can achieve high intelligibility: in mu-
sic productions, lyrics are typically highly intelligible, notwith-
standing the instruments in the background and often large
amounts of deliberately-added reverberation. This is true even
though intelligibility is usually secondary to a much more com-
plicated matter: the pleasantness of the ensemble. In contrast,
intelligibility is the main focus of NELE, and the quality of
sound is often a secondary issue at best. Tang et al. [6] explain
how algorithms that are very effective against noise may be less
pleasant than unmodified speech when heard at high SNR (i.e.,
favourable low noise conditions) and that this might be because
noise masks the processing artefacts such that, while listening
in noise, listeners perceive as more “pleasant” the speech that is
simply more intelligible.

Whilst the entertainment industry utilises knowledge ob-
tained through scientific research, the reverse seldom happens.
The process of building software solutions based on expert
knowledge is known as knowledge engineering and can be ap-
plied to the sound engineering domain [7]. Practitioners in the
music industry tend to converge to the same artistic choices [8];
there appears to be a target frequency contour for a mix, al-
though it seems to vary through the years and be influenced by
genre; engineers seem also to express similar preferences for
DRC [9]. Automation in music production has been explored
in [9] and [10]; a review of different methods can be found in
[11]. Our algorithm is focused on the human voice, with the
specific goal of maximising intelligibility in noise and reverber-
ation. This falls much closer to the endeavours of the hearing
aid and telephony industries, which are much less concerned
with aesthetic matters than the music industry. Nevertheless,
ASE was conceived as a meeting of all of these realities, hope-
fully drawing the best characteristics from each.

2. Algorithm Design

In order to investigate the modifications a sound engineer may
apply in a NELE scenario, we followed an empirical approach
similar to [7]: let an expert (in this case the first author, who
has a background in the field) perform the task and, from an
analysis of output, then design an automatic algorithm.
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2.1. Generation of reference stimuli

We used an established commercial DAW (Digital Audio Work-
station) with state-of-the-art plug-ins to process the speech sig-
nals needed for this analysis. Recordings of the Matrix sen-
tences in three languages (English, German and Spanish) [12],
[13], were provided as material for the Hurricane Challenge 2.0.
We concatenated a number of utterances from all languages and
imported them into the DAW. Since the provided corpora fea-
tured male speakers only, we used additional material from fe-
male voices [14, 15, 16] as well as male speakers from other
corpora [14, 17], in order to minimise potential biases due to
speaker and recording characteristics. Participants in the chal-
lenge were advised that entries would be processed with noise
and reverberation, and mock-up stimuli were provided as an il-
lustration. The challenge includes three reverberation condi-
tions: far, medium and near. We used the provided cafeteria
noise plus reverberation (in varying amounts) created with a
plug-in to simulate our best estimate of the three conditions.

To enhance intelligibility, we processed the material with
a parametric equalizer, a 4-band compressor, then a lim-
iter/maximiser (a type of broadband compression). We mod-
ified the parameters until all speech tokens were highly intel-
ligible (as judged by the sound engineer), even at low SNRs
combined with long reverberation times.

Based on the results in [1] and [3], we selected SSDRC
[18] as a benchmark NELE algorithm, used it to process the
same speech tokens, then imported these into the DAW for com-
parison. We aimed to achieve the same intelligibility with our
processing, while avoiding the unpleasant artefacts.

Within the time constraints of the Hurricane Challenge 2.0,
it was only possible to evaluate quality informally with non-
expert listeners, in order to confirm that our choices were also
acceptable to a general audience. Listeners were exposed to
stimuli processed by ASE and by SSDRC, in noise and in quiet,
and asked which they preferred in each condition. Once we
achieved comparable intelligibility along with a preference for
our approach, we exported the processed speech signals for
analysis.

2.2. Analysis of reference stimuli

The expert-created signals were analysed in order to design an
algorithm that emulated the expert’s processing. The algorithm
has similar stages to those used by the expert: multi-band com-
pression, equalization and broadband compression.

We divided our reference signals in six bands: the num-
ber of channels and frequency ranges being inspired by modern
mixing consoles used in sound engineering. We used FIR filters
(Matlab fir1) with a large number of taps to give a steep roll-
off minimising band overlap and phase rotation. We analysed
the power in each band and, rather than using absolute values,
we defined the third band as reference (0 dB) and calculated
the difference in dB for the other bands. The power scheme
we obtained from this analysis is used in ASE to equalize the
signal. An example of spectral power distribution for plain and
modified speech can be seen in Figure 1.

An informal analysis of the temporal envelope of our refer-
ence stimuli revealed a substantial degree of natural variation,
in spite of DRC. For this reason, we decided to try and match
those variations with a mild approach to compression, inspired
by common practice in sound engineering and hearing aid tech-
nology. In order to pursue an artefact-free sound, we built an ad-
hoc compressor, taking advantage of the non-causal processing
allowed by the use case.

Figure 1: Power distribution of a plain speech utterance (or-
ange); the same utterance after processing with ASE beta
(blue). Stimuli have the same RMS value.

2.3. Non-causal dynamic range compression (DRC)

While compressors are widely used in industry, they are seldom
explained in academic literature; a good summary of methods
can be found in [19]. The typical parameters of DRC are thresh-
old, ratio, attack and release time, knee width and make-up gain.
Such parameters can be quite obscure for the lay user, but even
experts have to choose on a case-by-case basis. One has to con-
sider the specific characteristics of the signal at hand and the
desired output; automatic choice of parameters is hence highly
desirable. A model for automatic attack and release times was
proposed in [20]; a method for compressing multiple tracks in a
mix was proposed in [9].

As transients are difficult to tackle in real-time processing,
compressors typically feature a side chain which contains the
smoothing detector (which provides a smoother representation
of the signal) and the gain computer; if using look-ahead, com-
pression is calculated over a short time frame, and the output
is hence delayed by this amount. There is a trade-off between
compression quality and delay. In this work, we take advan-
tage of a non-causal approach, since we are processing speech
recordings; this equals unlimited look-ahead. For the Chal-
lenge, we processed individual utterances of five words.

In ASE beta, some compression parameters were fixed dur-
ing the design process, and some are calculated on the input
signal. Compression is instantaneous, based on a smoothed rep-
resentation of the signal, which we call the guide. The guide can
be RMS or peak, and we calculate it in the following way. The
input signal is analysed in time-frames of 20 ms (every 10 ms);
for each frame we calculate the RMS (for the RMS guide) or the
maximum absolute value of the signal (for the peak guide). The
obtained values are then interpolated with Matlab’s interp1q
function. An RMS guide can be seen in Figure 2. We chose an
RMS guide for the lower frequency bands, since their tempo-
ral envelopes are slowly-varying, and peak for the higher bands
(which vary more quickly).

In our compressor, the detector lies before the gain com-
puter; the gain is hence based on the difference (in dB) between
the guide and the threshold. The threshold is determined as a
fraction the maximum value of the guide (in dbFS); see example
in Figure 2. In the algorithm design process, we set those frac-
tions as constants for each band; we allowed for a larger frac-
tion (hence less compression) in the lower bands and reduced it
gradually with increasing frequency. We fixed the compression
ratio to 2 for all bands.
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Figure 2: DRC. Black: compressed signal; red: original signal;
yellow: guide (RMS). The threshold (-34dBFS) is a fraction of
the maximum value of the guide (-26 dbFS). Ratio = 2:1.

2.4. Summary of processing steps in ASE beta

• Divide the signal into 6 frequency bands

• Compress the dynamic range of each band

• Scale bands according to power scheme

• Recombine signals, then broadband compression

• Rescale signal to original RMS

ASE beta is noise-unaware and reverb-unaware: stimuli
are processed independently from channel conditions. This
choice is motivated by the effectiveness and ease of use that
SSDRC demonstrated in [3].

3. Subjective Evaluation
In the Hurricane Challenge 2.0, listening tests were run in Ger-
man, English and Spanish, using recordings of Matrix sentences
[12], [13]. 187 participants were recruited (German=62, En-
glish=63, Spanish=62). Speech stimuli were mixed with cafete-
ria noise in 3 reverberation conditions: near, medium and far.
Each condition was evaluated at 3 SNRs: low, medium and
high, expected to yield respectively 25%,50% and 75% WAR
(Word Accuracy Rate) for plain (i.e., unmodified) speech. WAR
measures intelligibility as the percentage of correct words lis-
teners can recall after hearing a stimulus. For a detailed de-
scription of the experiments, please refer to [4].

Results are reported in terms of WAR in Figure 3. ASE
showed a mean absolute improvement of +37% WAR across
conditions. The benefit was larger in near reverberation, reach-
ing +58% for Spanish at low SNR.

Although WAR gives an idea of the results at first glance,
intelligibility gains are better expressed as EIC (Equivalent In-
tensity Change) [21], which is the amount in dB one would have
to amplify unmodified speech in order to achieve the same intel-
ligibility as modified speech. Algorithms behave differently at
different SNRs, and for this reason one must assess their perfor-
mance at different points along the psychometric curve [21, 3].
Since in the present experiment the reference values for plain
speech are quite varied across conditions, instead of grouping
results by SNR we decided to fit the data points to a psycho-
metric curve (using Matlab nlinfit and the logistic function
described in [22]) for every language/reverb condition, and then
calculate the offset between the plain and ASE curves at the
50% point (hence the notation EIC 50). However, results must
be taken with caution as the data points for ASE all lie at the
top of the curve, which may lead to an incorrect estimate of its
slope. This being said, ASE provided substantial benefit in all
conditions, from an estimated minimum of 4.4 dB to a maxi-
mum of 7.3 dB (EIC 50), outperforming other entrants to [4] in
25 out of 27 conditions.

4. Discussion
4.1. Intelligibility

The difference in absolute WAR gains for ASE beta across dif-
ferent languages (in the same reverb/SNR condition) is mainly
due to reference plain speech having different WAR scores.
The EIC 50 differences across languages may be due to in-
dividual differences of the speakers [13] and recording proce-
dure/equipment.

We assume the Hurricane Challenge 2.0 test environment
to be comparable to [3], although we do not have exact knowl-
edge of the impulse responses used in the Challenge. In [3],
SSDRC achieved the best performance in cafeteria noise, with
an EIC of 4.2 dB at a low SNR. In [1] the variant uwSSDRCt
achieved an EIC of 5.1 dB in SSN (Speech Shaped Noise). In
the present Challenge, ASE achieved 7.3 dB in cafeteria noise
and reverberation, outperforming SSDRC in all conditions but
one. This might be explained by the more fine-grained process-
ing in ASE. While SSDRC aims at reducing spectral tilt via
pre-emphasis filters, ASE aims at increasing the Speech Intel-
ligibility Index [23] by scaling the power in separate frequency
bands (see Figure 1). Additionally, ASE performs 2 stages of
DRC, multi-band first and then broadband, while SSDRC only
performs one stage of broadband DRC.

Results from [1], [3] and the present Challenge are not di-
rectly comparable. Even where noise conditions are similar,
speech corpora and test methodologies are different. While [1]
and [3] featured a recording of the Harvard Sentences in English
[24, 17], the Hurricane Challenge 2.0 uses the Matrix sentences
in three languages. Both Harvard and Matrix sentences have
low semantic predictability, but while the former use a rather
large vocabulary, the latter only use words from a closed set.
While in [1] and [3] listeners typed what they heard into a free-
response field, in the present Challenge listeners responded via
a graphical interface only displaying words from the closed set.
Results from a 2019 study (in preparation for publication) found
that the psychometric curves for the two methods are compara-
ble in slope (although having a significant offset). We therefore
predict that ASE would achieve similar EIC gains in a free-
response evaluation.

4.2. Quality of speech sound

In our informal survey, listeners’ preference for our approach
over the SSDRC benchmark is in part attributable to the fre-
quency profile being controlled by equalization, which reduces
the risk of excessive loudness in some frequency bands. Also,
a moderate and carefully customized DRC guarantees absence
of unpleasant artefacts. In this case, the non-causal approach
(which for the Hurricane Challenge means look-ahead to the
end of the current utterance) is an explicit advantage.

The effects of DRC parameters on intelligibility and quality
are widely studied in the hearing prosthetics domain, but there
seems to be no consensus on ideal values [25]. In ASE beta we
set the compression ratio to 2 because low ratios (6 2) appear
to be generally well tolerated [26]. The effect of ratio is in-
tertwined with the threshold – but we were quite cautious here
too, as listeners may opt for a higher threshold when given the
choice [27].

Given the lack of agreement in hearing technology, we
chose our number of channels and frequency ranges inspired
by sound engineering hardware, where six bands is considered
plenty - and in fact is available only on high-end mixing con-
soles. The idea proved to be successful in this case, although it
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Figure 3: WAR% (with standard error) for all conditions. Results are divided by language, reverberation (Near, Medium, Far) and
SNR (low, mid, high). ASE scores for each condition are depicted in the adjacent blue columns. EIC 50 indicates the intelligibility gain
provided by ASE. For a comparison with other algorithms, please refer to [4].

would be interesting to try a different number of channels (and
possibly different DRC setting).

The aim of ASE is to find a fine balance between intelligi-
bility and quality, but defining quality is not trivial. Its intended
use case is “high-fidelity sound”, as in professional entertain-
ment productions. Objective measures like PESQ [28] and
POLQA[29] are designed to evaluate speech quality, but they
require a reference signal: their objective is to assess the cor-
ruptions due to a communication channel (e.g., telephone line)
by comparing the noisy output to the original input. ANIQUE
[30] is a non-intrusive measure, but it is intended for narrow-
band signals only. Such measures are of little help in our use
case, as we are looking to rate the quality of a hi-fidelity broad-
band signal as-is, in the absence of noise and without a reference
signal.

In recent years there has been growing interest in using cog-
nitive load as an objective measure of quality. It is possible that
such a measure would be capable of revealing the effect of sub-
tle changes in the signal, where a traditional subjective assess-
ment of intelligibility or quality (like MOS) would fail [31].
From recent studies, it has also emerged that listeners do not
necessarily prefer the frequency profiles that lead to the highest
intelligibility scores [32]. The method proposed in [32] and the
measurement of cognitive load are valuable tools for further de-
velopment of ASE. ”Perfect” quality can only be defined with
respect to listeners.

4.3. Additional considerations

NELE is not intended as a substitute for the mastering process
that is normally performed in the production of commercial au-
dio, but to be complementary. In fact, while professionally-
recorded speech may be enjoyed at its best with high quality
equipment in an ideal environment, NELE algorithms can be
used to make sure such speech remains intelligible in reverber-
ant or noisy conditions too. Most NELE algorithms described
in the literature to date are only intended for mundane tasks that
do not require an artistic touch (e.g., processing public address
announcements); however, we cannot exclude the use of ASE
in artistic contexts.

We are also interested in the potential of ASE for improv-
ing the accessibility of speech for individuals with hearing loss.
Other NELE algorithms have proven to be beneficial in this
use case [33, 34]. According to the World Health Organiza-
tion, there is a substantial mismatch in the numbers of hearing-

impaired people that could benefit from medical assistance and
those who actively seek it. Individuals are often deterred by the
stigma of disability associated with a hearing device, and the
high-cost of such devices [35]. While professional help is key
to the well-being of a hearing-impaired person, more intelligible
speech from playback devices would be a useful step forward in
improving accessibility.

5. Conclusions

In this paper we present the beta version of ASE (the Automatic
Sound Engineer), a NELE (Near End Listening Enhancement)
algorithm based on sound engineering knowledge.

The algorithm was built following a knowledge engineer-
ing approach. We used established commercial sound engineer-
ing tools to process speech (from several corpora) in simulated
noisy and reverberant conditions, with the goal of maximising
intelligibility while preserving quality - intended as the pleas-
antness of sound in professional entertainment productions. We
analysed the frequency and temporal profile of the obtained ex-
pert tokens and tried to reproduce it in ASE, by means of multi-
band and broadband DRC, equalization and limiting. We built
an ad-hoc non-causal compressor with some degree of automa-
tion, which we programmed for a relatively mild compression.

ASE was entered into the Hurricane Challenge 2.0, a multi-
language comparison of NELE algorithms in realistic noise and
reverberation. ASE outperformed competitors in 25/27 condi-
tions, showing improvements of over 4 dB EIC (Equivalent In-
tensity Change) in every scenario, and up to 7.3 dB EIC. We find
this approach very promising, and we are developing a fully au-
tomated version of our algorithm: those parameters we set as
constants in the design process of ASE beta (e.g., the compres-
sion ratio), will be computed case-by-case on the input signal.
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