
Adaptive compressive onset-enhancement for improved speech intelligibility in
noise and reverberation

Felicitas Bederna1, Henning Schepker2, Christian Rollwage1, Simon Doclo1,2, Arne Pusch1,
Bitzer1,3, Jan Rennies1

1Fraunhofer Institute for Digital Media Technology IDMT, Division Hearing, Speech and Audio
Technology, and Cluster of Excellence Hearing4all, Oldenburg, Germany

2Signal Processing Group, Department of Medical Physics and Acoustics and Cluster of Excellence
Hearing4all, University of Oldenburg, Germany

3Institute of Hearing Technology and Audiology (IHA), Jade-University of Applied Sciences
Wilhelmshaven / Oldenburg / Elsfleth, Germany

felicitas.bederna@idmt.fhg.de, jan.rennies@idmt.fhg.de

Abstract
Near-end listening enhancement (NELE) algorithms aim to pre-
process speech prior to playback via loudspeakers so as to main-
tain high speech intelligibility even when listening conditions
are not optimal, e.g., due to noise or reverberation. Often
NELE algorithms are designed for scenarios considering either
only the detrimental effect of noise or only reverberation, but
not both disturbances. In many typical applications scenarios,
however, both factors are present. In this paper, we evaluate
a new combination of a noise-dependent and a reverberation-
dependent algorithm implemented in a common framework.
Specifically, we use instrumental measures as well as subjec-
tive ratings of listening effort for acoustic scenarios with differ-
ent reverberation times and realistic signal-to-noise ratios. The
results show that the noise-dependent algorithm also performs
well in reverberation, and that the combination of both algo-
rithms can yield slightly better performance than the individual
algorithms alone. This benefit appears to depend strongly on
the specific acoustic condition, indicating that further work is
required to optimize the adaptive algorithm behavior.
Index Terms: speech intelligibility, near-end listening en-
hancement, reverberation

1. Introduction
In many applications speech played back via loudspeakers is de-
graded by noise and reverberation in the listening room result-
ing in reduced speech understanding [1, 2]. In order to main-
tain high speech intelligibility even in adverse conditions, it is
possible to pre-process the loudspeaker signal using so called
near-end listening enhancement (NELE) algorithms. A simple
approach would be to increase the speech level, when noise and
reverberation are present. However, while this may increase
speech intelligibility, it may also overload the amplification sys-
tem or can become unpleasantly loud. Hence, it is desirable to
design algorithms that maintain the same signal power before
and after processing.

Many approaches have been presented to improve speech
understanding under an equal-power constraint [3, 4, 5, 6].
Most of these approaches, however, only take into account the
presence of either noise [7, 8, 9] or reverberation [10, 11, 12,
13, 14] in their design. While this typically eases the design,
in practice both disturbances are present at the same time. One
solution could be to design NELE algorithms taking into ac-

count the combined effect of both noise and reverberation (e.g.
[15, 16]). These approaches incorporated the detrimental ef-
fect of reverberation by adding the late reverberation [16] or
both late reverberation and early reflections [15] as an additional
noise term in a model-based approach. On the other hand, it is
also possible that algorithms designed for either noise or re-
verberation may also provide enough improvement in scenarios
that are both noisy and reverberant, hence making a combined
approach obsolete.

Previously, the benefit of NELE algorithms was commonly
evaluated using speech intelligibility tests in noise-only scenar-
ios [4]. However, this usually requires very low signal-to-noise
ratios (SNRs) to show differences between algorithms, since
even unprocessed speech is often perfectly understood at, e.g.,
SNRs above -3 dB [2, 17]. In contrast, realistic scenarios of-
ten exhibit much more favorable SNRs, e.g., generally positive
SNRs where speech intelligibility is already at ceiling [18]. In
[19] it was shown that listening effort can be used to assess the
benefit of NELE algorithms at much higher SNRs, which are
more representative for everyday-scenarios.

In this paper we evaluate two different NELE algorithms in
noisy and reverberant environments and propose a combination
of both algorithms in a common framework. More specifically,
we use the noise-dependent AdaptDRC algorithm [7] and the
reverberation-dependent OE algorithm [14]. In contrast to pre-
vious studies using speech intelligibility measurements at rather
low SNRs, we also consider more realistic SNRs and different
reverberation times and use subjectively rated listening effort
[20] as well as instrumental measures to quantify the benefit of
both algorithms and their combination.

2. Near-end listening enhancement
The general NELE problem is to modify the unprocessed
(clean) speech signal s[k] at discrete time k to produce the mod-
ified speech signal s̃[k] before playing it back via a loudspeaker.
In the listening room, additive noise r[k] and reverberation char-
acterized by a room impulse response (RIR) h[k] disturb the
speech information transmission. The goal of a NELE algo-
rithm is to process the speech such that s̃[k] ∗ h[k] + r[k] is
more intelligible than s[k] ∗ h[k] + r[k], where ∗ denotes con-
volution. In practice an estimate r̂[k] of the noise signal r[k]
as well as an estimate ĥ[k] of the RIR h[k] can be obtained
by using, e.g., adaptive filtering techniques to model h[k] [21].
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In the following, we assume perfect knowledge of the RIR (i.e.,
ĥ[k] = h[k]) and hence also a perfect noise estimate to be avail-
able (i.e., r̂[k] = r[k]).

In this paper we consider the noise-dependent AdaptDRC
algorithm [7] and the reverberation-dependent OE algorithm
[14]. Since these algorithms focus only on the effect of either
noise or reverberation, we propose to combine them in a joint
framework.

2.1. AdaptDRC

The AdaptDRC algorithm [7] was designed to improve speech
intelligibility in noisy environments by combining a frequency-
shaping stage aiming to enhance high frequency components
and a dynamic range compression (DRC) stage to amplify
low-level speech components while reducing high-level speech
components. A brief description of the algorithm is provided
below (for more details, see [7]).

The algorithm processes speech signals s(k) in time frames
of 20 ms. In the following, l andm indicate the frame index and
the discrete time index within a frame, respectively. The speech
frame sl(m) and the noise frame rl(m) are divided intoN = 8
octave bands centered at 125 Hz to 16 kHz. In the frequency-
shaping stage, a time- and frequency-dependent amplification
wn(l) is applied, with n denoting the band index. Using these
octave-band signals a simplified version of the Speech Intelli-
gibility Index (SII) is estimated for each frame l. Based on the
estimated SII ˆSII(l), a weighting function is applied that re-
sults in an adaptive amplification behavior. In case of a low
predicted speech intelligibility, i.e. ˆSII(l) −→ 0, a uniform
distribution of the speech power across all subbands is applied,
which leads to an increase of speech power in high frequency
regions. For high SII, i.e., ˆSII(l) −→ 1, no processing is ap-
plied, i.e., wn(l) = 1. In the DRC stage the goal is to amplify
low-level parts of each speech subband relative to high-level
parts in order to increase their audibility. To avoid signal distor-
tions for high SNRs, an adaptive compression scheme is used,
where for each frame a subband-dependent compression ratio
is computed based on the SNRs. For subband SNRs ≥ 15 dB a
compression ratio of 1 : 1 is applied, while for subband SNRs
≤ −15 dB a maximum compression ratio of 8 : 1 is applied.
For intermediate subband-SNRs a continuous linear transition
of the compression ratio is used. After recombination of the
subband signals, the rms-power of the re-combined output sig-
nal is adaptively normalized to the (broadband) input rms-power
to meet the equal-power constraint. Note that in very favor-
able listening conditions the two stages of the algorithm do not
modify the input signal, while in very unfavorable conditions
the maximum degree of processing is applied. An example is
shown in the top right panel of Figure 2.

2.2. Onset-Enhancement and Overlap-Masking Reduction
(OE)

The OE algorithm [14] was designed to increase speech intel-
ligibility in reverberant environments by reducing the influence
of self-masking of speech by its own reflections. A brief de-
scription of the algorithm is provided below (for more details,
see [14], where it is described as algorithm 2).

First, the speech s(k) is split into time frames of 32 ms and
transformed into the frequency domain using the fast Fourier
transform (FFT), yielding S(f, l) for the f -th frequency bin and
the l-th block. To reduce the amount of self-masking due to
the smearing of reverberated speech, the goal is to increase the

Figure 1: Block diagram of the ACO algorithm.

consonant-vowel-ratio. This increase is controlled by a time-
and frequency-dependent direct-to-reverberant ratio of running
speech (DRRs). To compute the DRRs, the RIR is assumed
to be a linear and time-invariant system h(k) = h and is
separated into a direct component hd and a reverberant com-
ponent hr (i.e., h = hd + hr) using a separation constant
of 1.3ms, and transformed to the frequency domain, yielding
H(f) = Hd(f) +Hr(f).

Using this separation, the direct sound and the reverber-
ant component of the speech in the frequency-domain can
be computed as Sd(f, l) = S(f, l)Hd(f) and Sr(f, l) =
S(f, l)Hr(f). In order to take into account the spectral resolu-
tion of the human auditory system, the speech spectra Sd(f, l)
and Sr(f, l) are grouped into subbands of an equivalent rect-
angular bandwidth approximating that of auditory filters. Us-
ing this grouping, the energy of the direct speech component
φsd(n, l) and the energy of the reverberant speech component
φsr (n, l) in the nth auditory filter are computed, their ratio rep-
resenting the block- and filter-dependent DRR(n, l).

These DRRs are utilized to enhance the consonant-to-vowel
ratio based on the observation that the DRR is typically larger
for consonants than for vowels. A frequency-dependent gain
αl
n is computed, where frames with higher DRRs are amplified,

while frames with lower DRRs are attenuated. To maintain the
broadband power of the input signal, an additional broadband
normalization is applied. In the presence of no reverberation,
the applied gain is perfectly compensated for by the renormal-
ization, and hence no processing is applied. An example is
shown in the bottom left panel of Figure 2.

2.3. Adaptive compressive onset enhancement (ACO)

The goal of the proposed ACO algorithm is to improve speech
intelligibility in both noisy and reverberant environments. It
combines the concepts of the noise-dependent AdaptDRC algo-
rithm and the reverberant-dependent OE algorithm as depicted
in Figure 1. While the AdaptDRC algorithm and OE algorithm
outlined in Section 2.1 and Section 2.2 use different filterbank
structures (octave-band vs FFT) and frame lengths (20 ms vs
32 ms), the ACO algorithm processes a speech signal in 50%
overlapping time frames of 32 ms and uses a common 21-band
one-third octave filter bank with center frequencies from 160 Hz
to 16 kHz. The amplification factorswn(l) of the AdaptDRC al-
gorithm and αl

n of the OE algorithm are calculated separately
for each speech frame. The amplification and compression
stages of the AdaptDRC algorithm are applied to the speech
frame first, before multiplying the processed frequency bands
with the corresponding gain factors of the OE algorithm. After
applying the amplification gains, the signal s̃l,ACO

n (m) is re-
constructed to the processed speech signal s̃(k) with an inverse
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Figure 2: Exemplary spectrogram of unprocessed speech (top
left) and speech processed by the three algorithms (calculated
with an RIR with T30 = 4, 14 s and noise at −20 dB SNR).

filterbank, followed by a normalization to obtain the broadband
signal power of the original speech.

An illustration of the ACO processing is provided in Fig-
ure 2 (bottom right panel). The high-frequency amplification
from the AdaptDRC-component can clearly be seen in compar-
ison to unprocessed speech (top left panel), although it is less
pronounced for ACO-processed speech than for AdaptDRC-
processed speech due to the interaction with the OE-processing.
The impact of the OE-component is especially visible as sharper
temporal modulations (or more clearly pronounced speech
pauses, e.g., at t ≈ 1 s, or 1.8 s).

3. Evaluation
3.1. Methods

Evaluations were conducted based on two instrumental mea-
sures as well as subjective listening tests. The intrusive short-
time objective speech intelligibility (STOI) metric [24] was
used because it is widely used to evaluate algorithm perfor-
mance, but to our knowledge has not been tested with NELE
algorithms in noise and reverberation before. In addition, a
measure to predict perceived listening effort based on automatic
speech recognition was used, which was shown to be highly cor-
related with experimental data for AdaptDRC-processed speech
in noise [25], but so far was not tested for NELE-processed
speech in reverberation either. Since this measure includes a
mapping to the same perceptual scale as used in the experiment,
it can be quantitatively compared to the subjective data.

The subjective evaluations were conducted with 17 listeners
with audiologically normal hearing, who listened to the stimuli
via headphones. The task was to rate the perceived listening
effort associated with understanding the target talker on a cate-
gorical 13-point scale ranging from ”no effort” (1 Effort Scal-
ing Categorical Unit, ESCU) to ”extreme effort” (13 ESCU)
[20] on a graphical user interface. Target stimuli were ran-
dom sentences from the German Oldenburg sentence test [17],
which had been played back and recorded using a KEMAR
dummy head in a room with electronically adjustable rever-
beration times. The reverberant speech level was always fixed
at 65 dB SPL at the dummy head position, and cafeteria noise
[22] was scaled and played back in the same room to produce
SNRs of -5 and 10 dB. For each SNR, three different reverbera-
tion times were used, corresponding to simulations of an opera
hall (T30 = 1.08 s), a cafeteria (T30 = 2.40 s), and a train station
(T30 = 4.14 s). Each of these six conditions was measured with

Figure 3: Results of the instrumental evaluation for the listen-
ing effort model (left) and STOI (right). Each panel presents
the computed measures as functions of the SNR for the different
processing types.

unprocessed speech as well as with speech processed by the
three algorithms (AdaptDRC, OE, and ACO). The ratings for
the four signals in each condition were carried out at the same
time using a method motivated by MUSHRA tests, i.e., listen-
ers could switch between the test signals, a clean-speech ref-
erence and a low-quality anchor, and both rate and rank the
perceived listening effort. The six conditions as well as the
processing types within a condition were randomized in their
order. Non-parametric Friedman tests followed by pair-wise
Wilcoxon rank sum tests were conducted separately for each
combination of reverberation and SNR to assess if differences
between algorithms were statistically significant. Post-hoc tests
were Bonferroni-corrected for multiple comparisons.

For the instrumental evaluations, ten sentences from the
German Oldenburg sentence test were used. The speech was
first processed by each processing type and convolved with the
RIRs as in the experiment. The reverberant speech was then
summed with the same noise type and scaled for SNRs between
−20 and 20 dB.

3.2. Results

Figure 3 shows the results of the instrumental evaluation for
the listening effort model (left, lower is better) and STOI (right,
higher is better). Each panel presents the computed measures as
functions of SNR for the different processing types. In all con-
ditions, the measures showed the expected improvement with
increasing SNR. In comparison to unprocessed speech (right-
pointing triangles), all algorithms produced an improvement
over the entire SNR range with the exception of ceiling and
floor effects at very high and low SNRs, respectively. The im-
provement depended on processing type, and was largest for the
ACO algorithm (squares), although the instrumental measures
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Figure 4: Measured listening effort ratings. Statistically sig-
nificant differences between processing types are marked by an
asterisk.

indicated a very similar improvement for the AdaptDRC algo-
rithm alone (left-pointing triangles). For these two algorithms,
the improvement corresponded to SNR shifts of the psycho-
metric functions of about 5 dB (listening effort measure) and
4 dB (STOI), as indicated by the horizontal distance between
the functions in the mid-range of the psychometric functions.
In contrast, the benefit obtained by the OE algorithm alone (cir-
cles) was smaller, corresponding to about 2 dB SNR. The algo-
rithm benefit did not appear to differ much between the different
reverberation conditions.

Experimentally measured listening effort ratings are shown
as boxplots in Figure 4. In general, the results were in line
with what could be expected from the instrumental measures. In
particular, perceived listening effort was significantly lower for
speech processed by ACO and AdaptDRC compared to unpro-
cessed speech (benefit about 2-3 ESCU when comparing me-
dian values). For the OE algorithm, the benefit was absent (at
-5 dB SNR) or present but smaller (at 10 dB SNR), reaching sta-
tistical significance only in the cafeteria condition. In general,
the observed algorithm benefit was slightly larger at −5 than at
10 dB SNR, and similar for all reverberation conditions.

4. Discussion
The comparison of ACO (i.e., the combination of AdaptDRC
and OE) and AdaptDRC indicated no consistent advantage of
the implemented combination. For some conditions, the instru-

mental measures and (by trend) the experimental data indicated
a benefit, while for other conditions ACO did not produce better
results than the AdaptDRC algorithm alone. This is an interest-
ing outcome because evaluations within the recent Hurricane
Challenge [26] suggest that ACO showed better performance
in highly reverberant conditions compared to conditions with
less reverberation. This would not necessarily be expected for
AdaptDRC processing alone, but likely represents the effects
of the OE-processing which reduces the self-masking of speech
and is, hence, particularly effective in more reverberant condi-
tions [14]. However, a direct comparison between the present
data and the Challenge outcome is difficult because the isolated
AdaptDRC algorithm did not participate in the Challenge. Fur-
ther research seems necessary to investigate the specific con-
tributions of the AdaptDRC- and OE-components as well as to
investigate the dependency of the algorithm benefit on acous-
tical conditions. Conversely, the present data indicate that the
AdaptDRC algorithm is applicable also in reverberant condi-
tions despite the fact that is was not designed for that purpose.
The benefit measured in this study (4-5 dB SNR) was compa-
rable to the benefit measured in a previous study for anechoic
speech in a comparable cafeteria noise [7].

Another important outcome of this study was that the em-
ployed listening effort measure produced very accurate predic-
tions of the experimental data. While this was already shown for
AdaptDRC-processed (anechoic) speech and different masking
noises [25], the present study indicates that the measure gener-
alizes well across different types of NELE algorithms as well
as reverberant conditions. Importantly, it agreed well with the
data also with respect to the amount (or absence) of a benefit
in terms of perceived listening effort compared to unprocessed
speech. This makes the measure a potentially powerful tool for
algorithm comparisons and parameter tuning in realistic listen-
ing conditions. Because it is non-intrusive it is generally possi-
ble to employ the measure as an online monitoring system in the
future, although a non-realtime version of the measure was used
in this study. This would further increase the measure’s practi-
cal use, e.g., as a control instance to steer algorithm parameters
in time-varying acoustic conditions.

5. Conclusions
The following conclusions can be drawn from this study:

1. The AdaptDRC algorithm developed for speech in noise
[7] also performs well in reverberant conditions.

2. The combination of the AdaptDRC algorithm with the
reverberation-dependent algorithm OE [14] produces
only small additional improvements compared to Adapt-
DRC alone for the tested conditions.

3. All of the experimentally observed trends are well cap-
tured by the tested instrumental measures. Specifically,
the single-ended listening effort measure [25] yields
quantitatively accurate predictions, indicating its general
applicability as a tool for evaluating NELE algorithms.
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[15] H. Schepker, D. Hülsmeier, J. Rennies, S. Doclo, ”Model-based
integration of reverberation for noise-adaptive near-end listening
enhancement,” in Proc. Interspeech, Dresden, Germany, Aug.
2015, pp. 75–79.

[16] R. C. Hendriks, J. B. Crespo, J. Jensen, and C. H. Taal, ”Optimal
Near-End Speech Intelligibility Improvement Incorporating Addi-
tive Noise and Late Reverberation Under an Approximation of the
Short-Time SII,” IEEE/ACM Trans. Audio Speech Lang. Process.,
vol. 23, no. 5, pp. 851–862, May 2015.

[17] K. Wagener, V. Kühnel, and B. Kollmeier, ”Entwicklung und
Evaluation eines Satztests für die deutsche Sprache I: Design des
Oldenburger Satztests (Development and evaluation of a German
sentence test I: Design of the Oldenburg sentence test),” Z. Audiol.,
vol. 38, pp. 4–15, Sep. 1999.

[18] K. Smeds, F. Wolters and M. Rung, ”Estimation of signal-to-noise
ratios in realistic sound scenarios,” J. Am. Acad. Aud., vol. 26, no.
2, pp. 183–196, Feb. 2015.

[19] J. Rennies, A. Pusch, H. Schepker, and S. Doclo, ”Evaluation of
a near-end listening enhancement algorithm by combined speech
intelligibility and listening effort measurements,” in J. Acoust. Soc.
Am., vol. 144, no. 4, EL315–EL321, Oct. 2018.

[20] M. Krueger, M. Schulte, M. Zokoll, K. Wagener, M. Meis, T.
Brand, and I. Holube, ”Relation between listening effort and speech
intelligibility in noise,” Am. J. Audiol., vol. 26, pp. 378–392, Oct.
2017.

[21] E. Haensler and G. Schmidt, ”Speech and audio processing in ad-
verse environments,” Springer Verlag, Berlin, Germany, 2008.

[22] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg, V.
Hohmann, and B. Kollmeier, “Database of multichannel in-ear and
behind-the-ear head-related and binaural room impulse responses,”
EURASIP Journal on Advances in Signal Processing, vol. 6, 2009.

[23] H. Schepker, K. Haeder, J. Rennies, and I. Holube, ”Perceived
listening effort and speech intelligibility in reverberation and noise
for hearing-impaired listeners,” Int. J. Audiol., vol. 55, no. 12, Dec.
2016, pp. 738–747.

[24] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, ”A short-
time objective intelligibility measure for time-frequency weighted
noisy speech,” 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, Dallas, TX, 2010, pp. 4214–4217.

[25] R. Huber, A. Pusch, N. Moritz, J. Rennies, H. Schepker, and
B.T. Meyer, ”Objective assessment of a speech enhancement
scheme with an automatic speech recognition-based system”,in
Speech Communication; 13th ITG-Symposium, Oldenburg, Ger-
many, 2018, pp. 1–5.

[26] J. Rennies, H. Schepker, C. Valentini-Botinhao, and M. Cooke,
”Intelligibility-enhancing speech modifications – The Hurricane
Challenge 2.0,” Proc. Interspeech, Shanghai, China, Oct. 2020

1355


