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Abstract
This contributions describes the ”IISPA” submission to the Hur-
ricane Challenge 2.0. The challenge organizers called for sub-
missions of speech signals processed with the aim to improve
their intelligibility in adverse listening conditions. They eval-
uated the submissions with matrix sentence tests in an interna-
tional listening experiment. An intelligibility-improving signal
processing approach (IISPA) inspired from research on speech
perception of listeners with impaired hearing was designed.
Its parameters were optimized with an objective intelligibil-
ity model, the simulation framework for auditory discrimina-
tion experiments (FADE). In FADE, a re-purposed automatic
speech recognition (ASR) system is employed as a models for
human speech recognition performance. The model predicted
an improvement in speech recognition threshold (SRT) of ap-
proximately 5.0 dB due to the optimized IISPA. The processed
speech signals were evaluated in the Hurricane Challenge 2.0.
The measured improvements were language-dependent: up to
4.8 dB for the Spanish test, up to 3.8 dB for the German test,
and up to 2.1 dB for the English test. The results show on the
one hand the potential of using an ASR-based speech recogni-
tion model to optimize an intelligibility-improving signal pro-
cessing scheme, and on the other hand the need for thorough
listening experiments.
Index Terms: speech enhancement, intelligibility improve-
ment, automatic speech recognition, speech recognition model

1. Introduction
We rely on speech as our primary communication channel in
many daily situations. Sometimes, speech is the only avail-
able source of information, e.g., announcements in a mall or
an airplane. Then, noise and reverberation can make the correct
recognition of important information difficult or even impossi-
ble. In this case, highly intelligible speech can be crucial for
the successful communication. Intelligibility-enhancing modi-
fications of the speech signal were shown to improve the speech
recognition performance in noisy and reverberant listening con-
ditions [1].

The Hurricane Challenge [1] was the first large-scale open
evaluation of intelligibility-improving algorithms, where eigh-
teen contributions competed on a common data set to increase
speech intelligibility in noise. Several contributions relied on
spectral shaping, dynamic range compression, as well as spec-
tral contrast enhancements. Some used speech-intelligibility
prediction models, like the speech intelligibility index [2], to
optimize the signal processing parameters. Most objective intel-
ligibility models (or metrics) (OIMs) rely on signal-to-noise ra-
tios (SNRs) or correlations between representations of the pro-
cessed and unprocessed speech and fail to provide accurate pre-
dictions for processed (speech) signals [3]. Also, these metrics
do not predict the outcome of a speech recognition experiment
but an index values which is designed to be highly correlated

with the empirical speech recognition performance.
Recently, a simulation framework for auditory discrimina-

tion experiments (FADE, [4]) was proposed that employs a re-
purposed automatic speech recognition (ASR) system to simu-
late speech recognition tests. An advantage of this approach is,
that it predicts the outcome of a speech recognition test, e.g., a
speech recognition thresholds (SRT) or a recognition rate for a
given SNR. The approach was shown to predict the effect of sta-
tionary and fluctuating noise maskers on the outcome of the ma-
trix sentence test in several languages [5]. Further, it was shown
to accurately predict the improvement in SRT due to noise re-
duction schemes, i.e., the speech recognition performance with
non-linearly-processed noisy speech signals [6]. With a mod-
ification to the feature-extraction stage of the ASR system, it
was even shown to accurately predict the individual benefit in
SRT in noise due to different hearing-loss compensation strate-
gies including compression amplification [7]. Hence, the ap-
proach could be suitable to optimize intelligibility-enhancing
signal processing algorithms.

The Hurricane Challenge 2.0 [8] again performed a coordi-
nated international evaluation of the intelligibility of modified
speech in Spanish, English, and German language. The partic-
ipants were provided with unprocessed matrix sentence speech
test signals in three languages, impulse responses, correspond-
ing noise signals, and a method to generate noisy speech signals
at three positions with different reverberation. The task was to
improve the speech recognition performance by processing the
unprocessed speech signals prior to adding reverberation and
mixing them with the noise signal. The evaluation was per-
formed with over 60 native listeners in each language, where
positions, and hence the impulse responses and noises, were
slightly different from those provided for the optimization.

In this contribution, the parameters of an intelligibility-
improving signal processing approach (IISPA) were optimized
for the Hurricane Challenge 2.0 using FADE simulations. The
predicted and achieved improvements in the Hurricane Chal-
lenge 2.0 are presented and discussed.

2. Methods
2.1. Intelligibility-improving signal processing approach

The IISPA was designed with the aim to expose a few param-
eters which could be optimized using FADE simulations. A
GNU/Octave reference implementation documents the imple-
mentation details1. Here, the core processing blocks are de-
scribed and illustrated. For the analysis of the speech signal,
a spectro-temporal representation that is widely used in the
feature-extraction stages of ASR systems, the logMS was used.
An example of a logMS of a portion of an unprocessed speech
signal can be observed in the top panel of Figure 1. The spec-
tral resolution was approximately 1 ERB (equivalent rectangu-

1https://github.com/m-r-s/fade-hurricane
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Figure 1: Log Mel-spectrogram of an unprocessed Spanish
speech sample (upper panel) and the corresponding signal pro-
cessed with IISPA (lower panel), both normalized to 65 dB SPL.

lar bandwidth), i.e., the bandwidth of an auditory filter in the
human auditory system. The analysis window shift was 10 ms
(the window length 25 ms) and allowed to use an overlap-add
method to modify the corresponding waveform in 20 ms win-
dows. Gains for each time-frequency bin of the logMS were
determined and applied as follows:
1) Spectral gains in dB were determined by a polynomial func-
tion of degree 2 on a logarithmic frequency scale to the base
2 centered at 2 kHz. The slope, which can be interpreted in
dB per octave, and curvature were exposed as optimization pa-
rameters. The slope parameter S can weight frequencies below
2 kHz against frequencies above 2 kHz, and the curvature pa-
rameter C frequencies close to 2 kHz against frequencies far
from 2 kHz.
2) Band-pass characteristic with a lower cut-off frequency of
L=500 Hz and an upper cut-off frequency of U=8000 Hz was
applied. The gains for bands of the logMS with center fre-
quencies outside this range were set to −∞ dB. The values
of 500 Hz and 8000 Hz for L and U , respectively, were deter-
mined in pilot experiments and fixed for all languages. The
effect of the band-pass can be observed in the example of pro-
cessed speech in the lower panel of Figure 1.
3) Dynamic range manipulation of the logMS such that signal
dynamics which are relevant for speech recognition were pre-
served and dynamic which is less relevant was removed. The
following description is strongly related to work on a possible
compensation strategy for hearing loss which is patented in Ger-
many (DE 10 2017 216 972). The logMS of the unprocessed
signal was convolved with seven spectro-temporal smoothing
kernels. The effective sizes of the used Hanning-window ker-
nels are listed in Table 1. An illustration the result of the con-
volutions, i.e., examples of the smoothed versions of the logMS

Table 1: Spectral and temporal smoothing kernel (Hanning win-
dow) sizes used to derive smoothed versions of the logMS of the
unprocessed signal, in Mel-bands and ms, respectively.

Layer 1 2 3 4 5 6 7
Spectral 1 2 4 4 8 16 32
Temporal 10 10 10 30 30 30 30

which are referred to as layers, are depicted in the left row in
Figure 2. The element-wise differences between adjacent lay-
ers are depicted in the right column. The differences provide a
decomposition of the logMS in spectral and temporal modula-
tions.

Here, the smoothing can be interpreted as a spectro-
temporal modulation low-pass filtering, and differences be-
tween low-passes can be interpreted as band-passes. For exam-
ple, the difference D2 between Layer 2 and 3, encodes spectral
modulations between 1/2 and 1/4 cycles

ERB , which are considered
important for the recognition of vowels. The difference D3

between Layer 3 and 4, encodes temporal modulations above
1
30

ms ≈ 33.3Hz, in bands with a spectral resolution of 4 ERB
and are considered to be important for the recognition of con-
sonants. The difference D5 between Layer 5 and 6, encodes
spectral modulations between 1/8 and 1/16 cycles

ERB (with a tempo-
ral resolution of≈ 33.3Hz) and are considered not to be crucial
for speech recognition.

The differences provide a band-pass decomposition of
the logMS in spectral and temporal modulations; hence,
Layer 1 can be written as the sum of Layer 7 and
D6+D5+D4+D3+D2+D1. However, the differences can also
be multiplied by factors F1, F2, F3, F4, and F5, which com-
press or expand the corresponding encoded dynamic. The
element-wise summation of the modified differences F1 ·D1 +
F2 ·D2 + ...+ F6 ·D6 gives a modified version of the logMS.
The element-wise difference with Layer 1, i.e. the logMS of the
unprocessed signal, gives the time- and frequency-dependent
gains which are required to perform the desired modification.
Only F2, F3, F4, and F5 were exposed as optimization param-
eters, while F1 and F6 were set to 1.

4) Application of gains of step 1), 2), and 3) to the un-
processed waveform was performed with an overlap-add re-
synthesis with 10 ms window shift and 20 ms windows length.
For this, the gains of step 1), 2), and 3) were combined, i.e.,
summed up element-wise, which gives the desired total change
in gain. The FFT coefficients of the signal frames, that were al-
ready calculated for the logMS, were multiplied with the inter-
polated (at center frequencies of the respective FFT bin) desired
change in gain. After taking the inverse FFT of the modified
FFT coefficients, the real parts of the frames were multiplied
with Hanning windows of 20 ms duration and merged into a
time-signal with overlap-add re-synthesis. The logMS of a pro-
cessed portion of a clean Spanish speech signal with S=6 dB
per octave, C=0 dB per octave2, L=500 Hz, U=8000 Hz, F1=1,
F2=3, F3=2, F4=1, F5=0, and F6=1 is depicted in the lower
panel of Figure 1.

2.2. Simulations of speech tests with FADE

With FADE, the approach is to simulate a speech test, i.e., a
speech recognition experiment with listeners. This is achieved
by training and testing a modified ASR system at different
SNRs and derive a psychometric function from the achieved
recognition performance. The matrix sentence tests employed
in the Hurricane Challenge 2.0 are especially well suited for
this approach, because they have a simple grammar which can
be easily modeled with the employed ASR technology.

The code for the FADE simulations with the Hurricane
Challenge 2.0 data is available2. Matrix test sentences in three
languages (Spanish, English, and German), impulse response
for three positions (near, mid, far), and a noise recording were
provided by the organizers of the challenge. In the following,

2https://doi.org/10.5281/zenodo.3725679
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Figure 2: Spectro-temporally smoothed versions (layers) of the
log Mel-spectrograms of the unprocessed clean speech signal
(left column) and the element-wise differences between adjacent
layers (right column). The color indicates the level, in the left
column like in Figure 1, between 0 and 80 dB SPL, in the right
column from -10 to 10 dB.

Table 2: Initial and optimized parameter values for IISPA.

Parameter S C F2 F3 F4 F5

Language dB
octave

dB
octave2

Initial 0 0 1 1 1 1

Spanish 6 0 3 2 1 0
English 3 0 3 2 1 0
German 9 -1 3 2 1 0

the most important steps to simulate a speech test with these
signals in FADE are described.

The clean speech signals of the selected language (e.g.,
Spanish) were processed with IISPA and normalized to the
RMS amplitude of the clean signal. Then, the processed signals
were convolved with the selected impulse response (e.g., mid)
and mixed with random portions of the noise signal at SNRs
from -24 dB to 6 dB in 3 dB-steps. A training corpus was gen-
erated by repeating this step until a total of 400 sentences per
SNR were generated. A test corpus was generated by repeating
this step until a total of 100 sentences per SNR were gener-
ated. The training corpus was used to train an ASR system for
each SNR which can discriminate the 50 words of the matrix
sentence test. The test corpus was used to evaluate the recogni-
tion performance of the ASR systems. The predicted outcome
of the speech test was the lowest SNR at which at least one of
the ASR systems achieved the desired recognition performance,
e.g., 50% correct for the SRT-50. Pilot experiments showed that
the SRT-50 would not be a good choice to optimize a speech-
intelligibility improving algorithm, because it allows psycho-
metric functions which never exceed 60% correct recognition
rate. Hence, in this work, the SRT-90 was simulated, i.e., the
SNR at which 90% of the words could be correctly recognized.

2.3. IISPA parameter optimization with FADE

After pilot simulations, the frequency range was limited by L
and U to the range between 500 and 8000 Hz (cf. Figure 1) for
all languages. The other parameter were initialized according
to Table 2. To optimize the parameters, the following procedure
was used. Only the impulse responses for the mid position (as
the most representative) were considered during the optimiza-
tion in order to reduce the number of simulations. For each
optimization parameter a set of values was considered. Slopes
S from -10 to 0 dB per octave and curvatures C from -4 to 4
dB per octave2, in 1 dB-steps. For the modulation factors F2..5

values of 0, 1, 2, 3, 4, and 5. The SRT-90 for the initial parame-
ter values was simulated. Then all considered parameters were
tested in the following order: first all values for the parameter
S, then all values for C, all values for F2 to F5. Always when a
predicted SRT was lower than the currently lowest SRT, the best
parameter configuration was updated. If this happened, the op-
timization was started again after all parameters were iterated.
The process finished once no parameter change improved the
current best configuration anymore.

2.4. Evaluation of IISPA in the Hurricane Challenge 2.0

IISPA with the corresponding optimized parameter configura-
tion (cf. Table 2) was used to process the provided speech
signals, and the processed signals were submitted to the Hur-
ricane Challenge 2.0. There, the signals were convolved with
impulse responses which were similar (but not identical) to the
ones provided for optimization and mixed at three SNRs (low,
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mid, high) with a noise recording similar to (but not identical) to
the one provided for optimization. In total, more than 60 listen-
ers per language were presented with the processed and unpro-
cessed stimuli and had to recognize the matrix sentences. The
equal-performance SNR improvement (EPSI) according to [9]
was calculated from the recognition performance, which was
evaluated at three fixed SNRs per condition. It was positive if
the processing improved the SNR, and negative otherwise.

3. Results and Discussion
3.1. IISPA parameter optimization with FADE

When the SRT-50 was used for the optimization, it tended to
narrow down the bandwidth of the speech signals with the pa-
rameters U and L to less than 1 to 3 kHz. There was sufficient
information in this frequency range for the ASR system to cor-
rectly recognize 50% of the words, but not to achieve recogni-
tion rates above 60%, i.e., the simulated psychometric functions
were very flat. To avoid this undesired flatting of the psycho-
metric function, the parameters U and L were fixed to 0.5 and
8 Hz, respectively and the SRT-90 was used as the optimization
criterion instead of the SRT-50. The SRT-90 might also better
reflect realistic listening conditions. But the same optimization
for a more complex speech test with than the matrix sentence
test might have resulted in different parameters.

Because the simulations have a stochastic component and
many good configurations achieved SRT-90s close to each
other, the 10 best configurations for each languages were com-
pared for similarities. Finally, the parameters in Table 2 were
chosen. The same values for F2..5 were chosen for all lan-
guages, because they resulted in low simulated SRT-90s. F2=3
effects an expansion of spectral modulations between between
1/2 and 1/4 cycles

ERB by a factor of 3, F3=2 an expansion of tempo-
ral modulations above ≈ 33.3Hz by a factor of 2, and F5 = 0
a removal of spectral modulations between 1/8 and 1/16 cycles

ERB .
These settings effect the spectral and temporal contrast en-
hancement that can be observed in the lower panel in Figure 1.

Good values for slope S and curvature C turned out to be
language (or maybe rather speaker) dependent, where the pre-
dicted improvement was approximately 5 dB for all languages.
The simulation results underline that, due to the complex, non-
linear nature of the problem, a data-driven optimization for
speech recognition performance requires more than an OIM: 1)
A meaningful measurement (here the SRT-90 with the matrix
sentence test was chosen), 2) a representative set of conditions
(here the mid position condition was chosen) 3) and an inter-
pretation of the universality of the best values (here some pa-
rameter values were used across languages). Their combination
increases the chances to uncover concepts that might generalize
to other than the simulated conditions.

3.2. Evaluation of IISPA in the Hurricane Challenge 2.0

The mean recognition performance for languages, positions,
and SNRs are presented in Figure 3. The processing achieved an
EPSI, i.e., an SNR improvement, of up to 4.8 dB in the Spanish,
up to 3.8 dB in the German, and up to 2.1 dB in the English eval-
uation. The improvements were language-dependent, which de-
viates from the prediction. Only for the Spanish talker, who co-
incidentally is the author of this manuscript, the predicted im-
provement of 5 dB was observed. Also, the improvements de-
pended on the position; the highest were observed for the near
or mid positions. Lower improvements were observed for the
far position, where the proposed processing slightly decreased
the performance with the English talker.
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Figure 3: Average word recognition rates depending on the SNR
measured with matrix sentence tests in Spanish, English, and
German language, for the near, mid, and far positions.

That the same optimization strategy results in such vari-
able improvements for the different talkers was unexpected.
The FADE simulations did not predict this outcome despite
prior work indicating that the approach can predict language
effects [5]. Too few data points were available to speculate on
the reasons why the processing and optimization with FADE
worked better for the Spanish and German talker than for En-
glish one. The main difference between the processing for the
languages was the spectral slope parameter S, i.e., the process-
ing was very similar. Hence, there was an interaction between
the talker/language and the signal processing, which was not
explained by the model. However, the predictions were not per-
formed with the binaural impulse responses and noise signals
that where used in the evaluation. These simulations could be
performed to evaluate the prediction performance of the model.

4. Conclusion
FADE, an objective ASR-based speech recognition model,
was successfully used to optimize IISPA, an intelligibility-
improving signal processing scheme. The results show that
FADE can provided valuable information for the optimization
of a speech processing algorithm. However, the large variability
in improvements across languages was not predicted and shows
the need for thorough listening experiments.
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[9] M. R. Schädler and B. Kollmeier, “Separable spectro-temporal ga-
bor filter bank features: Reducing the complexity of robust features
for automatic speech recognition,” Journal of the Acoustical Soci-
ety of America, vol. 137, no. 4, pp. 2047–2059, 2015.

1335


