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Abstract
Current automatic speech recognition (ASR) systems trained on
native speech often perform poorly when applied to non-native
or accented speech. In this work, we propose to compute x-
vector-like accent embeddings and use them as auxiliary inputs
to an acoustic model trained on native data only in order to im-
prove the recognition of multi-accent data comprising native,
non-native, and accented speech. In addition, we leverage un-
transcribed accented training data by means of semi-supervised
learning. Our experiments show that acoustic models trained
with the proposed accent embeddings outperform those trained
with conventional i-vector or x-vector speaker embeddings, and
achieve a 15% relative word error rate (WER) reduction on non-
native and accented speech w.r.t. acoustic models trained with
regular spectral features only. Semi-supervised training using
just 1 hour of untranscribed speech per accent yields an ad-
ditional 15% relative WER reduction w.r.t. models trained on
native data only.

Index Terms: ASR, accent adaptation, speaker embedding

1. Introduction
Voice interfaces are widely used for daily tasks such as booking
tickets, setting up calendar items, or finding restaurants, and for
other applications like education or healthcare. Despite these
successes, automatic speech recognition (ASR) systems still
perform poorly for speakers whose characteristics do not match
those of the training speakers. Accent is considered as one of
the most important factors of this mismatch [1]. Most speak-
ers exhibit a very wide variety of accents, usually influenced
by their native language or their region. Current ASR models
trained on native speech often experience a dramatic loss of ac-
curacy for speakers with strong accents [2]. This affects the
overall performance and inclusiveness of voice interfaces. Yet,
there is relatively little research on accented speech recognition.

Efforts to address accent and other factors of speaker vari-
ability have focused on data transformation and model adapta-
tion methods. For Gaussian mixture model - hidden Markov
model (GMM-HMM) based acoustic models, speaker adapta-
tion has proven to be effective for many years. Depiste their su-
perior generalization ability, deep neural network (DNN) based
acoustic models also suffer from speaker mismatch [3]. Many
adaptation methods have been proposed lately. A simple ap-
proach is to retrain the entire DNN using a regularized objec-
tive [4]. Another approach is to augment speaker-independent
DNNs by speaker-dependent layers [5, 6], activation functions
[7] or neuron weights [8] that are trained on adaptation data.
These methods are prone to overfitting [9] and induce a large
computational overhead at test time. Hence, the most popular
approach today is to augment the DNN’s input features with
i-vectors [10] or other auxiliary features which embed speaker
information and can be quickly computed at test time [11–13].
Variants of this approach have been explored, e.g., [14]. In [15],

multiple DNNs are trained to form a speaker-independent para-
metric space. An interpolation vector is estimated for each
speaker to combine the DNNs during adaptation. A set of
sub-networks is introduced in [16] to capture different acous-
tic properties where the outputs of those sub-networks are com-
bined by speaker-dependent interpolation weights.

By contrast with the above speaker adaptation methods, re-
search targeted to non-native or accented ASR is much scarcer.
Early studies focused on adapting the parameters of GMM-
HMM acoustic models trained on native speech by, e.g., maxi-
mum likelihood linear regression [17]. Later, methods that train
a specific model for each accent have been investigated [18].
Similarly, in [19], a unified model is trained on a limited num-
ber of accents, and adapted to any accent using grapheme-based
acoustic models. Although these approaches perform well, a
separate model per accent induces computational and storage
costs [20]. This calls for multi-accent methods able to recog-
nize non-native or accented speech via a single model.

Several attempts have recently been made inside the multi-
accent setting. One such approach relies on multi-task learning,
where the model is trained not only to discriminate phones but
also to identify accents [21]. Accent embeddings computed via
a time-delay neural network (TDNN) may be used as auxiliary
inputs [22]. Another approach is to train with all the available
data and fine-tune the last layer on accent-specific data [23,24].
This is similar to the adaptation of top layers to different lan-
guages in DNN-based multilingual ASR [25]. To avoid over-
fitting when adjusting the network parameters on a small adap-
tation set, a regularization term may be added [26]. A funda-
mental limitation of all these approaches is that they assume the
availability of transcribed training or adaptation data for the tar-
geted accents. Due to the cost of transcription, this assumption
is unrealistic when the number of accents is large.

In this paper, we propose to train an x-vector-like model
[27] to compute accent embeddings and use them as auxiliary
features for acoustic model adaptation. In addition, we ex-
plore the impact of semi-supervised training based on small
amounts of untranscribed speech from different accents. Com-
pared to [22], our embeddings are computed using an x-vector
like architecture instead of a vanilla TDNN followed by aver-
age pooling and, most crucially, our adaptation methodology
is fully unsupervised: the accented data used to train the em-
bedding model and the acoustic model is totally untranscribed.
For the evaluations, we perform a series of experiments using
TDNN acoustic models trained with the lattice-free maximum
mutual information (LF-MMI) criterion using Kaldi [28]. For
the sake of simplicity, we focus on accented English only. Nev-
ertheless, we believe that our proposed approach will also be
helpful in dealing with accented speech from other languages.

The paper is structured as follows. In Section 2, we present
our unsupervised model adaptation methodology. Experiments
involving four different accents are presented in Section 3. Sec-
tion 4 provides final remarks and conclusions.
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2. Proposed Methodology
Our proposed method consists of training a DNN to compute
accent embeddings, and subsequently using them as auxiliary
inputs to the acoustic model. This method can adapt on-the-
fly to a non-native or accented test utterance. The embedding
DNN requires accented data with accent labels for training, but
this data doesn’t need to be transcribed. Conversely, the training
data for the acoustic model must be transcribed, but it doesn’t
need to be accented. As surprising at it may seem, we will
show that accent embeddings do improve ASR performance
even when the acoustic model is trained on unaccented data
only. In addition, we leverage the untranscribed accented data
available at training time by means of semi-supervised learning.

2.1. Accent Embedding Model

In the field of speaker recognition, DNN-based embeddings re-
ferred to as x-vectors [27] have replaced i-vectors in many ap-
plication scenarios. The DNN models the short-term context
thanks to its TDNN-based architecture and it is trained to iden-
tify individual speakers from variable-length segments.

Following this, we propose to train a DNN with the same
architecture as in [27] to classify the accent of input speech seg-
ments. The DNN architecture is depicted in Fig. 1. The lower
TDNN layers operate at the frame level, their outputs are sum-
marized by a statistical pooling layer, and they are followed by
upper layers at the segment level with a softmax output layer.
Pooling operation accepts the final frame-level layer as input
and calculates the mean as well as the second-order statistics,
and the standard deviation. The statistical pooling layer and
the upper layers are key in the performance of x-vectors com-
pared to vanilla TDNNs. We train the network to classify ac-
cents using a multi-class cross-entropy objective. Denoting as
p(αk(n)|x(n)

1:T ) the estimated probability of accent k given the
T input frames x(n)

1 , . . . , x
(n)
T in segment n, the training objec-

tive is defined as

L =

N∑
n=1

log p(αk(n)|x(n)
1:T ) (1)

where k(n) is the ground truth accent for segment n and N is
the number of training segments. Segment-level embeddings
are extracted from the last hidden layer.
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Figure 1: DNN model for accent embedding. Statistical pooling
is performed between frame-level and segment-level layers that
aggregates over the frame-level representations.

2.2. Acoustic Modeling

The proposed accent embeddings can be used as auxiliary in-
puts for a wide variety of acoustic model topologies to achieve
on-the-fly adaptation at test time. In the following, we use
a TDNN-based acoustic model [29] trained with the LF-MMI
sequence-discriminative criterion [30], which has shown to be
effective in many ASR tasks. LF-MMI involves the ratio of two
posteriors computed from a numerator graph which represents
the phone sequence in the reference transcript and a denomina-
tor graph which approximates all possible word sequences by
all possible state sequences of a phone-level language model.

2.3. Semi-Supervised Learning

Independently from on-the-fly adaptation, any non-native or ac-
cented speech data available at training time (including the data
used to train the embeddings) can be leveraged for acoustic
model training. Due to the cost of transcribing large amounts
of non-native speech, we assume that this data is untranscribed.
This situation can be addressed by semi-supervised learning.

We explore this idea using the general semi-supervised LF-
MMI training method in [31]. A seed acoustic model is trained
on transcribed data and used it to decode the untranscribed
training data into lattices that represent the possible transcrip-
tion hypotheses. A new acoustic model is then trained on both
transcribed and untranscribed data by modifying the numera-
tor graph in the LF-MMI criterion for untranscribed utterances
so as to span all possible sequences in the corresponding lat-
tices, while the denominator graph remains unchanged. This
approach is also referred to as lattice-based semi-supervision.

In the following, the seed model is trained on transcribed
unaccented data and the final acoustic model is trained on both
transcribed unaccented data and untranscribed accented data
covering all accents. We compare it with fully supervised train-
ing on transcribed unaccented and accented data, which natu-
rally performs better but incurs a significant transcription cost.

3. Experimental Analysis
3.1. Dataset

We evaluate our method on native, non-native and accented
speech. For the native and non-native data, we use the Verbmo-
bil corpus [32] which contains spontaneous speech from human
meeting scheduling dialogs. In Verbmobil, we selected Ameri-
can English dialogs as native data and English dialogs from Ger-
man speakers as non-native data. We also gathered British, In-
dian, and Australian non-professional accented speech record-
ings from VoxForge [33]. We created training, test, and adapta-
tion sets with disjoint speakers as shown in Table 1. Non-native
and accented datasets are much smaller than native ones, which
is a common setting in multi-dialect speech recognition [34].

3.2. Acoustic Model and Lexicon

The TDNN acoustic model takes 40 mel frequency cepstral co-
efficients (MFCCs) over 25 ms frames with 10 ms stride as in-
puts. Its architecture is similar to [35], except for the chosen
splicing indexes. Denoting as t the current frame index, the in-
put layer splices together frames {t−2, t−1, t, t+1, t+2} (or,
more compactly, [−2, 2]). The i-vector/x-vector speaker em-
bedding or the accent embedding for the considered utterance,
if any, is concatenated with the spliced features. The five fol-
lowing hidden layers splice frames at different offsets, namely
{−1, 1}, {−1, 1}, {−3, 3}, {−3, 3}, and {−6, 3}. Note that
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Table 1: Statistics of the acoustic model training, test, and
adaptation sets in terms of the number of speakers. The num-
bers in parentheses refer to duration in hours.

Data Training Test Adaptation

Native (US) 235 (25.4) 25 (1.1) –

British (UK) – 25 (1.2) 25 (1.0)
Indian (IN) – 25 (1.4) 25 (1.0)

Australian (AU) – 25 (1.3) 25 (1.0)
German (DE) – 25 (1.1) 25 (1.0)

the differences between these offsets were chosen to be multi-
ples of 3 as in [30]. Speed perturbation [36] with speed factors
of 0.9, 1.0 and 1.1 is also used for 3-fold augmentation.

Training relies on the supervised or semi-supervised LF-
MMI criterion. For decoding, we use a 3-gram language model
trained over the native (US) data with a lexicon consisting of
6,945 unique words and a perplexity of 42.7. Decoding param-
eters are kept fixed for all experiments. In particular, we do not
perform lexicon or language model adaptation on top of acous-
tic model adaptation.

3.3. Computation of Accent Embeddings

The x-vector-like DNN architecture used to extract accent em-
beddings is outlined in Table 2. The input is a sequence of 30-
dimensional MFCCs with 25 ms frame length and 10 ms stride.
Cepstral mean normalization is applied over a sliding window
of 0.5 s. Speech frames where the first five layers operate at the
frame level, with a small temporal context centered at the cur-
rent frame t. After the four following layers, frame5 sees a total
context of 15 frames. A 512-dimensional accent embedding is
extracted from layer segment7 before the nonlinearity.

In the following, non-overlapping chunks of length 0.5 s
are utilized with an online extraction scheme. In other words,
we extract the accent embedding for a given 0.5 s chunk by
inputting to the network all T frames from the beginning of the
utterance up to that point. The embedding network is trained
on the utterances of all native (US) and accented (UK, IN, AU,
DE) speakers in Verbmobil and VoxForge, excluding those in
the test set for the acoustic model. These utterances include
the adaptation set for the acoustic model. We achieve 88.5%
classification accuracy over the validation data after the training
of our embedding network.

Table 2: DNN architecture for accent embedding.

Layer Context Frames Input x Output

frame1 [t− 2, t+ 2] 5 5F x 512
frame2 {t− 2, t, t+ 2} 9 1536 x 512
frame3 {t− 3, t, t+ 3} 15 1536 x 512
frame4 {t} 15 512 x 512
frame5 {t} 15 512 x 1500

stat pool [0, T ) T 1500T x 3000
segment6 {0} T 3000 x 512
segment7 {0} T 512 x 512
softmax {0} T 512 xK

3.4. Results

We evaluate 9 different acoustic models on native, non-native,
and accented data. All of them follow exactly the same TDNN
topology defined in Section 3.2. Only the auxiliary features and
the training strategy vary. We employed standard Kaldi tools
for all the experiments. For further implementation details, see
the provided code1. The word error rates (WERs) achieved by
the 9 systems are reported in Table 3.

Baseline — Model M1 is an accent-unaware model trained
on transcribed native English speech only, and can be consid-
ered as our baseline. The higher WER observed on accented
(VoxForge) data is notably due to the higher language model
perplexity. The measured perplexities are 49.2, 94.2, 163.3,
116.5, 66.5 for the English (US), British (UK), Indian (IN),
Australian (AU) and German (DE) test sets, respectively.

Impact of Accent Embeddings — Model M4 implements the
proposed accent embedding based adaptation method. Com-
pared with M1, we observe relative WER improvements of 7%
on non-native data, 11% on native data, and 14 to 20% on ac-
cented data. These improvements are remarkable since M4 has
been trained on native data only.

Impact of Semi-Supervised Training — Model M5 imple-
ments the proposed semi-supervised training method on top of
M4. The seed ASR model is trained on the transcribed native
training data and used to decode the untranscribed non-native
and accented adaptation data. A new model is then trained on
both training and adaptation data. Despite the small amount
of adaptation data (4 h, i.e., 1 h per accent as shown in Ta-
ble 1), M5 achieves a relative WER improvement of 15% on
non-native speech and 13 to 20% on accented speech compared
to M4. The overall WER improvement from M1 to M5 resulting
from the combination of our two unsupervised acoustic model
adaptation techniques reaches 10% relative for native speech,
21% for non-native speech, and 26 to 36% for accented speech.

Toplines — For comparison, we also evaluate fully super-
vised toplines. Model M6 is a supervised model trained on
both the native training data and the non-native and accented
adaptation data, assuming that the latter have been fully tran-
scribed. Model M9 is also a supervised model, which exploits
accent embeddings in addition. Unsurprisingly, M6 outper-
forms M1. More remarkably, it performs comparably and some-
times worse than M5. This means that our two combined un-
supervised model adaptation techniques managed to close the
gap and achieve the same performance as a standard fully su-
pervised approach. Interestingly also, M9 appears significantly
better than M6, indicating that accent embedding based adapta-
tion provides some benefit in the supervised setting too.

3.5. Easy- vs. hard-to-recognize speakers

To further analyze the impact of accent embeddings, we com-
pare the WER reduction achieved for various groups of speak-
ers, from easy- to hard-to-recognize ones. To do so, the test
speakers for each accent are divided into 5 groups sorted by in-
creasing WER for M1+M6. The relative WER reduction from
M1 to M4 in the unsupervised case and from M6 to M9 in the
supervised case is shown in Fig. 2. The WER improvement is
consistent across all groups of speakers, and appears to be larger
for harder-to-recognize speakers (the largest improvement be-
ing observed for group G5).

1https://gitlab.inria.fr/mturan/is-2020
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Table 3: WERs (%) achieved by different acoustic models on accented British, Indian, Australian, non-native German, and native
English speech. M1–M4: Supervised training on native speech only. M5: Semi-supervised training on transcribed native speech and
1 h of untranscribed speech for all accents. M6–M9: Supervised training on native speech and 1 h of transcribed speech for all accents.

Embedding Model
Adaptation

Data
British
(UK)

Indian
(IN)

Australian
(AU)

Non-Native
German (DE)

Average
Acc./Non-Nat.

Native
(US)

[M1] no embedding

none

38.8 47.9 39.5 33.3 39.4 14.5
[M2] i-vector embedding [11] 37.7 43.4 36.8 33.1 37.6 13.3
[M3] x-vector embedding [27] 39.5 33.2 37.4 32.7 34.8 12.9
[M4] accent embedding 32.4 41.3 31.7 31.1 33.5 12.9

[M5] accent embedding
1 h per accent

28.1 35.4 25.4 26.3 28.6 13.1
(untranscribed)

[M6] no embedding 27.9 35.6 28.1 23.8 28.4 14.0
[M7] i-vector embedding [11] 1 h per accent 23.7 31.8 24.3 21.9 24.8 12.8
[M8] x-vector embedding [27] (transcribed) 24.4 32.1 23.6 20.3 24.5 12.5
[M9] accent embedding 22.2 30.3 21.2 20.1 23.1 12.4

3.6. Comparison with Other Embeddings

Finally, we compare the proposed accent embeddings with i-
vectors [10], which have been successfully applied to speaker
and channel adaptation in many ASR tasks [11], and conven-
tional x-vectors [27], which have not been used for acoustic
model adaptation to the best of our knowledge but are known
to better characterize speaker information. The i-vector and x-
vector embeddings have been trained on the same data as the ac-
cent embeddings, and they are also computed in an online fash-
ion on 0.5 s chunks. The i-vectors have dimension 100 and are
derived from a 512-component GMM taking 40-dimensional
MFCCs after linear discriminant analysis as inputs.

In Table 3, we observe that the proposed accent embeddings
(models M4 and M9) outperform i-vectors (models M2 and M7)
and x-vectors (models M3 and M8). This means that internal
representations play an important role in adaptating to multiple
accents. This can be understood by visualizing the embeddings
using t-SNE [37] in Fig. 3. Our proposed embeddings tend to be
better clustered according to the accent which shows that they
are indeed able to catch accent-specific aspects.

4. Conclusions
In this paper, we focus on the task of multi-accent speech recog-
nition. We proposed a simple but effective acoustic model adap-
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Figure 2: Relative WER reduction (%) of the accent embedding
experiments. G1–G5 denote groups of speakers ranked by in-
creasing WER.

tation method which combines x-vector-like accent embeddings
and semi-supervised LF-MMI training. Unlike previous work,
our method is fully unsupervised: the accented data used to train
the embeddings and the acoustic model is untranscribed. We
show that our proposed accent embeddings outperform classi-
cal i-vectors and x-vectors for accented ASR, and that semi-
supervised training brings further improvement, closing the gap
with a fully supervised approach without auxiliary embeddings.
As future work, we plan to combine the proposed acoustic mod-
eling scheme with language model adaptation. We expect this
to benefit non-native ASR, since non-native speakers may also
use specific language variants.
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