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Abstract

We introduce the problem of adapting a black-box, cloud-based

ASR system to speech from a target accent. While leading

online ASR services obtain impressive performance on main-

stream accents, they perform poorly on sub-populations — we

observed that the word error rate (WER) achieved by Google’s

ASR API on Indian accents is almost twice the WER on US

accents. Existing adaptation methods either require access to

model parameters or overlay an error correcting module on out-

put transcripts. We highlight the need for correlating outputs

with the original speech to fix accent errors. Accordingly, we

propose a novel coupling of an open-source accent-tuned lo-

cal model with the black-box service where the output from the

service guides frame-level inference in the local model. Our

fine-grained merging algorithm is better at fixing accent errors

than existing word-level combination strategies. Experiments

on Indian and Australian accents with three leading ASR mod-

els as service, show that we achieve upto 28% relative reduction

in WER over both the local and service models.

Index Terms: Black box ASR systems, accented speech recog-

nition, adaptation.

1. Introduction

The emergence of cloud-based AI services, for tasks like ma-

chine translation and speech recognition, have greatly increased

the accessibility of machine learning. These services are pow-

ered by sophisticated engines and trained on large proprietary

datasets. The internals of these engines are often not exposed

to clients. Often a client’s input comes from a different domain

than the training domain of the server. The existing fix of re-

training to adapt to new target domains is not an option in this

case. This leads us to our problem of Black-box Adaptation.

In this work, the task of interest is automatic speech recog-

nition (ASR) in English, and the domains correspond to dif-

ferent accents. While leading online services like the Google

ASR API [1] attain superior performance on high-resource En-

glish accents, they perform poorly on a large number of under-

represented English accents. The API gives word error rates

(WERs) of 23% or higher on datasets in Australian and Indian

accents, as opposed to a WER of 13.2% on US accents. As ASR

systems start getting deployed in several critical applications, it

is increasingly imperative to design light-weight methods of ac-

cent adaptation to provide fair access to users of all regions and

ethnicity [2]. Existing methods of adapting ASR models to a

specific accent [3, 4, 5, 6, 7, 8], require modifying model pa-

rameters, which is not an option in the black-box setting.

One could implement black-box adaptation in the form of

an error-correction model to alter the outputs from the ser-

vice [9]. When the mismatch is in the language model, error

correction models using a domain-specific language model have

been proposed before [10]. However, for recovering from ac-

cent errors an error correction model would need to correlate the

service’s transcript with the original speech. To handle speech,

the model would in turn need to incorporate an ASR system.

This leads us to switching our perspective, so that black-box

adaptation amounts to building a local ASR system which is

retargeted to correct accent errors in the service’s output.

The local ASR system would be an open-sourced ASR ar-

chitecture like DeepSpeech2 [11] pretrained on a publicly avail-

able corpus like the US-accented Librispeech [12] corpus but

further finetuned using a small amount of data in the target ac-

cent. Typically the local model would be less accurate than the

service in all parts except the parts with systematic accent dif-

ferences. If the outputs from the local and service models are

combined via standard combination approaches at the word or

transcript-level [13, 14], we obtain only limited improvements

in accuracy over the service. In other words, if the local system

were also to be used as a black-box, we would not obtain the

performance improvements we seek.

Hence, we exploit our white-box access to the local sys-

tem. Our idea, at a high-level, is to use the transcript obtained

from the service to guide the inference of the local ASR system.

Our guided inference algorithm (named FineMerge) aligns the

characters in the service with input frames using a Viterbi-like

decoding and then selectively modifies the frame-level distribu-

tion of the local model. Our fine-grained merging step is easy

to plug in existing speech pipelines, fast during inference, and

specifically tailored to fixing accent errors — we often recover

words that were absent from stand-alone outputs of both lo-

cal and service models. Experiments on different service APIs

on two different English accents show that FineMerge provides

significant reduction in WER over either the local or service

models, and existing methods of combining them at the word-

level. To summarize, our overall contribution in this paper are:

1. We introduce the problem of black-box accent adapta-

tion of ASR service APIs.

2. We propose an efficient coupling of a local white-box

model with a black-box service to accent adapt with lim-

ited labeled data without incurring the cost of accessing

the service during training.

3. We design a novel guided inference algorithm on the lo-

cal model that is specifically tailored to correct focused

accent errors in an otherwise strong service API.

4. We evaluate our algorithm on two accents and three ser-

vice APIs. Our approach provides up to 28% reduction

in relative WER over both local and service models. Ex-

isting methods based on rescoring N-best lists or com-

bining outputs at the word-level are not as effective.

2. Related Work

Accent Adaptation in Speech. Accent adaptation in speech

has been a problem of long standing interest. One category of

methods attempt to create accent invariant systems and range

from early approaches that simply merged data from multiple
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accents for training a single model [15] to more recent work that

uses adversarial learning objectives to extract accent-invariant

feature representations from speech [16, 17]. A second cate-

gory of methods are accent dependent methods that adapt to the

speaker’s accent. Early approaches were HMM-based acoustic

model adaptation and pronunciation model augmentation with

accent-specific pronunciations [18, 19]. Within neural models,

accent adaptation was achieved via accent-specific output lay-

ers [3, 4] and hierarchical models in a multitask learning set-

ting [8]. A more recent work jointly learns an accent classifier

and accent-dependent models [5, 6, 7]. Our method is also ac-

cent dependent but we need to adapt a black-box service model.

We build local accent-adapted ASR systems, which are in turn

guided during inference by service predictions.

Black box ASR Systems. Speech transcription services have

seen widespread use in recent years. However, the underlying

ASR systems in these services are black box systems. Adapting

such models to a client’s needs would be of great utility but prior

work in this area is sparse. [20] shows how to optimize black

box ASR systems and [21] shows how to improve confidence

estimates produced by such black-box systems. Another closely

related work [10] is to use a domain-specific language model

and a semantic parser to rescore the hypotheses from a black-

box ASR system. Unlike their method, we achieve a more fine-

grained integration of our client model with the service.

System Combination Approaches. Ours can be viewed as

a type of system combination approach which has seen wide

use in ASR. ROVER (Recognizer Output Voting Error Reduc-

tion) [13] is one of the most popular techniques that first com-

bines predictions from different systems using an alignment

step followed by a weighted voting step. Prior work on dialectal

speech recognition [14] observed that using the best output from

a dialect-specific model is more accurate than techniques like

ROVER. Unlike ROVER that considers each individual system

as a black-box, our method that leverages white-box access to

a local accent-adapted ASR system is more targeted to correct

accent errors and ultimately more accurate.

3. Our Approach

Given an audio signal x, we invoke the service model S on x

and get the transcript s comprising of tokens s1, . . . , sk, along

with token-level confidences p1, . . . , pk. In addition the client

can invoke a local white-box model C that has been trained/fine-

tuned on limited accented labeled data. On input x, let c =
c1, . . . , cr denote the transcript from the local model C with

token-level confidences q = q1, . . . , qr . In general the number

of tokens in the two outputs (k, r) could be different.

One option to merge the transcripts of the two models is

using a word-level aligner like Rover [13]. However, for accent

errors we expect the service to be wrong only on a sub-part of a

word, say a ’t’ being wrongly identified as a ’d’. The local tran-

script c might correct some accent errors while missing out on

other parts of the word. In general, the local model is expected

to be weaker than the service on all but the accent errors, for the

client to want to pay for the service. As an example, consider

a gold transcript toasted that gets recognized as posted

and tostate by the service and local models, respectively.

The service model fails to recognize the t in toasted and

outputs posted. The local model recognizes the t but yields

tostate. To reconstruct the correct word in such cases we

need a finer-grained splicing at the sub-word level.

Given the prevalence of character-level models in modern

ASR systems we then sought to splice the two transcripts at

1 St p o s t e d d

Pt(St) 6e-5 1e-11 1 0.01 0.93 0.99 0.44 0.29 0.98

2 dt t t o s t a t d

Pt(dt) 0.99 0.99 1.0 0.98 0.93 0.99 0.55 0.64 0.98

3 rt t t o s t e d d

P s

t (rt) 0.62 0.99 1.0 0.61 0.93 0.99 0.66 0.57 0.98

Pt(rt) 0.99 0.99 1.0 0.98 0.93 0.99 0.44 0.29 0.98

Frame t 1 2 3 4 5 6 7 8 9

Table 1: Example: Client model revising frame-level charac-

ter distribution P → Ps using service transcript s=’posted’

in FineMerge. dt = argmax
c
Pt(c) and rt = argmax

c
P

s

t (c).
First row shows aligned service characters and their probabil-

ity from P, second row shows the modes of the P distribution,

third row shows the argmax rt of the revised distribution and its

probability from the revised and original distribution.

the character-level. Designing a good character-level merging

strategy is challenging because of large divergences between

the two outputs, both because of the differential strengths of

their acoustic models and the introduction of unheard characters

when biasing with their respective language models. Strategies

like combining the characters from the two outputs using Rover-

like algorithms fail to distinguish between the two types of er-

rors in the absence of accurate character-level confidence from

the service. For example, aligning the characters in posted

with tostate yielded toosttd

We finally designed an algorithm that exploits white-box

access to the local model C to guide its decoding using the ser-

vice transcript s, instead of merging a fixed c from C.

We assume the local model C is trained using the standard

CTC loss invoked on frame-level character distributions [22]

that maximizes likelihood of the target y by marginalizing over

all alignments compatible with y. During inference, the trained

model generates the distribution over alignments for an input

x and predicts character distributions P1, . . . , PT , P at each

of the T frames of the input. From these probability distribu-

tions, an output sequence c is recovered using beam-decoding

in conjunction with a language model (LM).

We guide this inference using the service transcript in two

steps: First align the service characters with each frame of the

local model using its frame-level probability distributions P.

Next revise P to selectively support s. We elaborate these steps

next. A pseudo code appears in Algorithm 1.

Aligning service characters Our first step is to expand out

the characters in s over the T frames by repeating characters or

inserting blanks so as to maximize the probability of the aligned

characters as per P1, . . . , PT . Let S denote the highest proba-

bility expanded character sequence. An example is shown in

Table 1 where s = posted is aligned over T = 9 frames and

the resulting S is shown in the first row. The full P cannot

be shown but we show the probability of the aligned character

below it and the maximizing character probability in the sec-

ond row. Such a forced alignment of s with P can be solved

optimally using a simple Viterbi-like dynamic programming al-

gorithm. The algorithm processes s time-synchronously over

the T frames such that either a symbol from s or a blank is pro-

duced as output at each frame. This is referred to as “Viterbi-

align” in Algorithm 1. Successfully aligning the service char-

acters requires an additional consideration. The server’s output

s contains characters that can be attributed to both accent errors

and cascaded language model errors. We therefore smooth P

distribution by adding a small constant 10−20 to all probability

1282



Algo 1: The FineMerge Inference Algorithm

Input: x: Input audio with T frames

C: Local model fine-tuned on target accent

ψ: service probability threshold

ω: service weight for mixing

γ: probability of blank

Output: Final transcript

1 s,p← Transcript, token-confidence from Service on x

2 P1, . . . , PT ← Frame-level probability from C(x)
3 S1, . . . , ST ← Viterbi-align(s, Smooth(P))
4 for t← 1 to T do

5 if ψ < Pt[St] < maxc Pt[c] then

6 ωt ← γ if St is blank else ωp

[word index of St]

7 P s

t ← (1− ωt)Pt + ωtoneHot(St)

8 else

9 P s

t ← Pt

10 Ps ← P s

1 , . . . , P
s

T

11 return Beam-decode using Ps and local LM of C

entries so even unheard characters get non-zero probability.

Revising P with s,p Now each frame t is aligned with a

character St in service. We need to revise P so as to ’support’

the aligned characters of service while ignoring those characters

which may have been erroneously introduced during LM-based

decoding. For this, we boost the probability of the aligned ser-

vice characters in Pt on those frames t where the probability

Pt(St) is less than the maximum probability in Pt but greater

than a threshold ψ. The lower limit ψ is to suppress those char-

acters in s which are not ’heard’ at all by the client’s acoustic

model, and are likely to have been introduced by the LM. The

amount of boosting is product of a hyper-parameter ω and the

confidence of the parent word of St. If St is blank, we use a

fixed probability γ. We use Ps to denote the P distribution af-

ter this revision with s. In Table 1, we show the mode of the

revised distribution Ps in row 3. Note, how ’p’ in frame 2 was

ignored in favor of the gold character ’t’ since P2(p) has a very

small probability (1e-11). In frame 7, the ’e’ from the service

was used to boost the probability of ’e’ in the P8 distribution

from 0.44 to 0.66. Likewise in frame 8. Greedy decoding on

the revised distribution yields tosted which is closer to the

gold token toasted than either the service token posted or

the local token tostate. Beam-decoding on the revised Ps

recovers the gold token.

The above merging algorithm is simple and requires tun-

ing only three hyper-parameters. Since client’s labeled data is

limited, we found that more elaborate attention-based merging

models using several parameters did not perform well.

4. Experiments

We evaluate FineMerge on two accents and three service com-

binations and contrast against four other methods. We present

anecdotes and analyze the accent adaptations we achieve.1

Datasets We used the Mozilla Common Voice v4 (MCV-v4)

dataset. The dataset is crowd-sourced and contains 1,118 hours

of validated speech data of varying accents. We extracted

1Our code is available at https://github.com/Kartik14/
FineMerge.

Method WER CER

Ind Aus Ind Aus

Local 27.99 24.41 16.98 14.55

Service 22.32 23.52 11.96 13.27

Rover 21.12 18.04 11.95 9.81

LM rescore 22.10 23.42 12.10 13.56

FineMerge 18.45 16.90 10.65 9.33

Table 2: Overall comparison on WER and CER for Indian and

Australian accented data.

around 28K Indian and 27K Australian accented utterances,

amounting to 37 and 35 hours of speech, respectively. For

each accent, we split into train, validation and test sets roughly

in the ratio 85-5-10 ensuring no overlap among speakers and

transcripts. The MCV-v4 audio clips were normalized in a pre-

processing step.

Service and Local Models We used Google Cloud Speech to

Text API [1] as our default service model, and include two other

service models later. For the local, we used the DeepSpeech2

(DS2) [11] model pretrained on the LibriSpeech corpus [12]

and then fine-tuned individually for each accent. We used a tri-

gram LM trained on sentences from the MCV-v4 corpus after

removing sentences overlapping with test sets. DS2 parame-

ters α (for LM weight) and β (to encourage more words) were

also fine-tuned on the validation set for each accent. The hy-

per parameters of our method ω, ψ, γ were also tuned on the

validation set for each accent.

Methods compared We measure word error rates (WER)

on five different models: the service model, the local model,

Rover [13] on the confidence weighted transcripts of service

and local model, LM rescoring top-N whole transcripts from

service, and our FineMerge method.

Overall Results In Table 2 we show the WERs on the In-

dian and Australian accents for these five methods. Observe

that overall the error rate of Service is lower than that of accent-

adapted Local. Rover’s word-level merging provides signifi-

cantly improved results than either of the two indicating that

the two models exhibit complementary strengths. LM rescoring

does not improve results much, establishing that the local LM

may not have much impact on the improved results. Our al-

gorithm FineMerge provides the greatest gains in WER over all

methods. For the Australian accent, we obtain a 28% relative re-

duction in WER over either of the service and client models. Ta-

ble 3 presents some anecdotes which show how the fine-grained

merging enables us to recover the highlighted word, even when

neither the service nor client models contain that word.

Comparing methods of character alignment A centerpiece

of our method is Viterbi aligning s with the frame-level char-

acter probability distribution. We show that this achieves a

character-level alignment that is more accurate than existing

methods by focusing only on character error rate (CER) before

beam-decoding. The last two columns in Table 2 presents CER

of Local (before LM decoding), Service (as is), Rover applied

at the character-level on these two, LM rescoring, and Fine-

Merge’s after selecting the modes of the revised distribution Ps

i.e., before LM decoding. We observe that FineMerge’s CER

is much lower particularly for Indian accent. This explains that
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INDIAN AUSTRALIAN

Gold everyone toasted the .. nora finds herself ugly ..

Service everyone posted the .. nora van to self ugly ..

Local everyone to state the .. nor iphones herself ugly ..

Rover everyone to posted the .. nor to self ugly ..

FineMerge everyone toasted the .. nora finds herself ugly ..

Gold for a brief time .. hannelore is an ..

Service soda beef time .. i don’t know what is an ..

Local for a breese time .. hailar is an ..

Rover for a beef time .. i don’t know what is an ..

FineMerge for a brief time .. hannelore is an ..

Gold the condition also occurs.. ..rope a bull while on a

Service definition of circus.. ..work a bowl while on a

Local the condition also acres.. ..rope the ball while on a

Rover the definition also circus.. ..work a bowl while on a

FineMerge the condition also occurs ..rope a bull while on a

Table 3: Anecdotes comparing transcripts of Indian and Aus-

tralian accents speech from five different methods.

the main reasons for our gains is due to our novel frame-level

fine-grained merging algorithm.

Varying Quality of Service Model In addition to the default

Google Speech API service (G-US), we evaluate on two other

models as service — a second Google speech-to-text model (G-

Video) [23] meant for transcribing audio of video files, which

works significantly better for MCV-v4 utterances because of

their low-fidelity, and Jasper [24], a recent end-to-end convolu-

tional neural ASR model trained on the LibriSpeech dataset.We

note here that we opted for G-US rather than Google’s ASR

API for Indian English because of the latter’s poor performance

(compared to G-US) on MCV-v4 utterances that are low band-

width. Table 4 shows the results. WER of local stays the same

since service has no role during its training. We see a wide dif-

ference in accuracies across the service models. G-Video is the

most accurate, but even in this case FineMerge is able to ob-

tain a relative WER reduction by at least 3%. The Jasper model

is worse than local Indian fine-tuned, yet FineMerge achieves

more than 15% relative WER reduction over both Service and

Local. This shows that the hyperparameters of our service-

guided local inference adapts even to a weaker service model.

Method Indian Australian

G-US G-Video Jasper G-US G-Video Jasper

Local 27.99 24.41

Service 22.32 13.77 31.82 23.52 11.08 19.56

Rover 21.12 20.51 26.95 18.04 13.84 17.57

LM rescore 22.10 13.37 31.38 23.42 10.99 19.35

FineMerge 18.45 13.36 23.72 16.90 10.68 16.07

Table 4: Effect of changing service model

Importance of Accent Adaptation One question is if our

gains are merely due to ensembling of any two independent

models adapted to test data domain, or did we specifically adapt

accent. To answer this, we run FineMerge with a local model

fine-tuned on a similarly-sized MCV corpus from a different ac-

cent. Table 5 compares our WER to the WER on client models

fine-tuned on US accented samples. Observe that FineMerge

outperforms service even when the local model is fine-tuned

Test Service FineMerge with

accent (Indian/Aus)-Local US-local

Indian 22.32 18.45 21.01

Aus 23.52 16.90 20.66

Table 5: WER comparison with different local models.

0.0

0.2

0.4

0.6

these were its however then their said there

Words

E
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e

System

FineMerge
Service

Figure 1: Highest reductions in error per word on Indian-

accented test samples.

on a different accent. This captures the base benefit of ensem-

bling. However, after fine-tuning on data of its own accent the

gains are higher. For Aus accent, service WER of 23.52 drops

to 20.66 with FineMerge on Indian-Local but drops further to

16.90 on Aus-Local.

Figure 1 shows the largest reductions in errors per word on

Indian test samples obtained by FineMerge over service. Error

rates are cut in half for most words revealing FineMerge’s abil-

ity to do accent adaptation. Word “however” is an interesting

example to highlight. The diphthong /AW/ in “however” has a

range of phonetic realizations across Indian speakers that has

been investigated in prior work [25]. This variability is difficult

for the service to accurately model, while FineMerge cuts the

errors on “however” down to 5% from 50%. Another interest-

ing example is “were”. The phonemes /v/ and /w/ are indistin-

guishable in most Indian languages, making minimal pairs like

veil and wail homophones when articulated by Indian speakers.

/DH/-initial words like “then”, “these”, “their” and “there”

are other likely targets of accent errors due to the lack of dental

fricatives like /DH/ in most Indian languages. FineMerge is able

to substantially reduce these errors.

5. Conclusion and Future Work

In this paper we motivated and introduced the problem of black-

box adaptation of an ASR service. We presented a novel cou-

pling of an open-source accent adapted model with the black-

box service model to fix accent errors in an otherwise strong ser-

vice model. We presented FineMerge an algorithm that achieves

a fine-grained mixing of the service output and local frame-level

distributions. We show that such fine-grained mixing is specif-

ically effective in fixing accent errors that word-level mixing

cannot fix. Our strategy achieves upto 28% reduction in word-

error rate over service APIs of varying grades of quality. Future

work could consider combining outputs from multiple services

and fixing both dialect and accent differences.
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