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Abstract
Local dialects influence people to pronounce words of the same
language differently from each other. The great variability and
complex characteristics of accents create a major challenge for
training a robust and accent-agnostic automatic speech recogni-
tion (ASR) system. In this paper, we introduce a cross-accented
English speech recognition task as a benchmark for measur-
ing the ability of the model to adapt to unseen accents us-
ing the existing CommonVoice corpus. We also propose an
accent-agnostic approach that extends the model-agnostic meta-
learning (MAML) algorithm for fast adaptation to unseen ac-
cents. Our approach significantly outperforms joint training in
both zero-shot, few-shot, and all-shot in the mixed-region and
cross-region settings in terms of word error rate.

Index Terms: speech recognition, accent-agnostic, cross-
accent, meta-learning, fast adaptation

1. Introduction
Spoken languages show great variation across regions and such
distinctions derive from the phonetics of local dialects and lan-
guage backgrounds. Despite the high performance reported
by state-of-the-art English automatic speech recognition (ASR)
systems, accented speech recognition is still an unsolved real-
world challenge due to the great variability of accents and their
complex characteristics [1]. It is difficult for ASR models to
adapt to unseen accents that have relatively distinct pronunci-
ations and tones compared to the accents used for training the
ASR models. Increasing the number of training data and ex-
posing the model to different accents is a common solution to
improve a model’s robustness to different speakers’ accents by
introducing variations. However, such approaches are costly
and not scalable due to the difficulties in collecting high-quality
speech data with different accents. Existing data augmentation
techniques such as noise injection [2] and speed perturbation [3]
have been proposed to overcome the limitation on high-resource
data. In this work, we explore training approaches for fast
adaptation to unseen accents instead of augmenting the training
data. We apply model-agnostic meta-learning (MAML) [4] to
teach the model to learn new tasks faster and more efficiently,
and our approach can easily be applied to few-shot learning.
While a small number of previous studies have explored joint
and multi-task training on multiple accent speech recognition
models [5, 6, 7]. None have thoroughly investigated few-shot
learning on the cross-accented speech recognition task.

We introduce a cross-accented speech recognition task de-
rived from an existing dataset, CommonVoice [8], to move to-
ward building a robust speech recognition system. The moti-
vation of this work is to establish a benchmark for evaluating
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Figure 1: Illustration modified from [10] of fine-tuning from
joint training (left) and MAML (right). The solid line repre-
sents the model optimization path of the initial parameters and
dashed line represents the fine-tuning path. The off white cir-
cles are training accents and green circles are testing accents.
MAML lets the model learn a representation that is more gen-
eralized (closer) to various tasks compared to joint training.

cross-accented speech recognition. We introduce an accent-
agnostic model by applying meta-learning as learning to learn
method for fast accent adaptation. The trained model is able
to rapidly adapt to recognize speech with unseen accents. We
train our transformer [9] speech recognition model on a set of
accents via meta-learning and fine-tune the trained model with
a few samples of target accented speech. Experimental results
show that our approach is able to quickly adapt to new accents
more effectively than joint training, and interestingly, our ap-
proach is also able to handle zero-shot predictions.

2. Related Work
2.1. Meta-Learning

Meta-learning is a sub-field of machine learning that designs
models for learning new tasks in a new setting with a few
training examples [11, 12]. In recent work, [4] propose
model-agnostic meta-learning (MAML) and show the appli-
cation of meta-learning in a deep learning framework. Sev-
eral meta-learning-based models have since been proposed for
solving few-shot image classification [13, 14, 15] and natu-
ral language processing applications, such as text classifica-
tion [16], dialogue response generation [17, 18], low-resource
machine translation [10], semantic parsing [19], and sales pre-
diction [20]. [10] makes the interesting finding that MAML is
actually able to generalize the model in the low-resource ma-
chine translation task without any fine-tuning steps or when
there is no information on the target accent. In speech appli-
cations, [21] introduce the practicality of applying MAML in
cross-lingual speech recognition, while in another line of works,
MAML has been applied to learn how to adapt respectively to
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Figure 2: Transformer ASR model architecture.

the speaker [22, 23].

2.2. Accented Speech Recognition

Existing studies on accented speech recognition mainly focus
on applying acoustic features that are accent-invariant and on
adaptation methods to allow the model to accommodate ac-
cented speech. [24, 25] introduce acoustic features and an adap-
tation method for recognizing accented speech. Meanwhile,
[6, 7] and [26] explore a multi-task architecture that jointly
learns an accent classifier and an acoustic model. [7] pro-
pose a mixture of expert models to segregate accent-specific
and phone-specific speech variability in a joint framework, and
[5] propose an adversarial training objective to help the model
to learn accent-invariant features. In this work, we explore the
possibility of recognizing speech with unseen accents and ex-
tend MAML to enable fast adaptation by few-shot learning in
the cross-accent setting.

3. Cross-Accented Speech Recognition
In this section, we present the architecture of our transformer-
based speech recognition model and the proposed meta-learning
method for fast adaptation on the cross-accented speech recog-
nition task.

3.1. Transformer Speech Recognition Model

As shown in Fig. 2, we build our model using a sequence-to-
sequence transformer ASR [9, 27, 28, 29] to learn to predict
graphemes from the speech input. Our model extracts audio
inputs with a learnable feature extractor module to generate in-
put embeddings. The encoder uses input embeddings generated
from the feature extractor module. Then the decoder receives
the encoder outputs and applies multi-head attention to its in-
put to finally calculate the logits of the outputs. To generate the
probability of the outputs, we compute the softmax function of
the logits. We apply a mask in the attention layer to avoid any
information flow from future tokens, and we train our model by
optimizing the next-step prediction on the previous characters
and by maximizing the log probability:

max
θ

∑

i

logP (yi|x, y′
<i; θ), (1)

where x is the character inputs, yi is the next predicted charac-
ter, and y′

<i is the ground truth of the previous characters. In the
inference time, we generate the sequence using a beam-search
in an auto-regressive manner. Then we maximize the following
scoring function:

η
∑

i

logP (yi|x, ŷ<i; θ) + γ
√

wc(ŷ<i), (2)

where η is the parameter to control the decoding probability
from the decoder, and γ is the parameter to control the effect of
the word count wc(ŷ<i), as suggested in [28] and [29].

3.2. Fast Adaptation via Meta-Learning

MAML [4] learns to quickly adapt to a new task from a num-
ber of different tasks using a gradient descent procedure, as
shown in Fig. 1. In this paper, we apply MAML to effectively
learn from a set of accents and quickly adapt to a new accent
in the few-shot setting. We denote our Transformer ASR as fθ
parameterized by θ. Our dataset consists of a set of accents
A = {A1, A2, · · · , An}, and for each accent i, we split the
data into Atra

i and Aval
i , then update θ into θ′ by computing

gradient descent updates on Atra
i :

θ′i = θ − α∇θLAtra
i

(fθ), (3)

where α is the fast adaptation learning rate. During the training,
the model parameters are trained to optimize the performance of
the adapted model f(θ′i) on unseen Aval

i . The meta-objective is
defined as follows:

min
θ

∑

Ai∼p(A)

LAval
i

(fθ′i) =
∑

Ai∼p(A)

LAval
i

(fθ−α∇θLAtra
i

(fθ)),

(4)

where LAval
i

(fθ′i) is the loss evaluated on Aval
i . We collect the

loss LAval
i

(fθ′i) from a batch of accents and perform the meta-

optimization as follows:

θ ← θ − β
∑

Ai∼p(A)

∇θLAval
i

(fθ′i), (5)

Table 1: Statistics of accented speech data in CommonVoice
dataset sorted alphabetically.

accents # sample duration (hr)
Africa (af) 4,065 5.04
Australia (au) 19,625 22.86
Bermuda (be) 363 0.46
Canada (ca) 17,422 20.20
England (en) 58,274 64.19
Hong Kong (hk) 1,181 1.21
India (in) 23,878 29.09
Ireland (ir) 3,420 3.71
Malaysia (my) 843 1.07
New Zealand (nz) 6,070 7.06
Philippines (ph) 1,318 1.68
Scotland (sc) 4,376 5.08
Singapore (sg) 693 1.00
South Atlantic (sa) 212 0.23
United States (us) 145,692 163.89
Wales (wa) 1,128 1.16

Total 288,560 327.93
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Table 2: Average Word Error Rate (% WER) with Standard Error (SE) results in the mixed-region setting.

accents MAML Joint Training
zero-shot 5%-shot 25%-shot all-shot zero-shot 5%-shot 25%-shot all-shot

without pre-training
Bermuda 33.22 ± 0.46 32.73 ± 0.47 31.85 ± 0.48 29.90 ± 0.60 38.92 ± 0.55 37.84 ± 0.50 36.23 ± 0.56 36.12 ± 0.65

Philippines 50.08 ± 0.56 48.22 ± 0.69 45.94 ± 0.64 44.43 ± 0.69 50.58 ± 0.81 49.72 ± 0.80 48.27 ± 0.85 45.47 ± 0.93

Wales 33.66 ± 0.83 33.31 ± 0.77 31.63 ± 0.86 29.70 ± 0.87 37.04 ± 0.68 37.43 ± 0.69 35.60 ± 0.80 32.37 ± 0.87

with pre-training
Bermuda 28.25 ± 0.47 28.64 ± 0.42 26.59 ± 0.43 25.71 ± 0.43 31.42 ± 0.57 31.43 ± 0.56 30.05 ± 0.44 27.64 ± 0.40

Philippines 40.99 ± 0.51 40.07 ± 0.52 39.06 ± 0.44 37.48 ± 0.42 43.17 ± 0.83 41.98 ± 0.76 40.56 ± 0.77 38.79 ± 0.69

Wales 25.91 ± 0.73 25.55 ± 0.86 23.94 ± 0.73 23.40 ± 0.64 29.14 ± 0.49 28.54 ± 0.52 26.70 ± 0.49 25.01 ± 0.56

where β is the meta step size and fθ′i is the adapted network
on accent Ai. The meta-gradient update step is performed to
achieve a good initialization for our model. Then we can opti-
mize our model with a small number of samples on target ac-
cents in the fine-tuning step. In this work, we use first-order
approximation MAML as in [10] and [30]. Thus, Equation 5 is
reformulated as:

θ ← θ − β
∑

Ai∼p(A)

∇θ′iLAval
i

(fθ′i). (6)

4. Experiments
4.1. Dataset

We use the CommonVoice dataset [8],1 a multilingual open-
accented dataset collected by Mozilla. In this work, we only
use the English dataset and filter for only speech data with an
accent label. There are 16 accents listed in the dataset, and we
split the dataset into groups according to the accent label. The
statistics of the English dataset are shown in Table 1. Note that
the dataset is imbalanced, and some accents only have very lim-
ited data. The pre-trained models are trained on the LibriSpeech
corpus [31], a 960-hour training corpus of English read speech
derived from audiobooks in the LibriVox project, sampled at 16
kHz. The accents are various and unlabeled, but the majority
are US English.2

4.2. Experimental Setup

We preprocess raw audio input into a spectrogram before we
fetch it into our model, which utilizes a VGG model [32], a
6-layer CNN architecture, as the feature extractor. Our trans-
former model consists of two transformer encoder layers and
four transformer decoder layers. The transformer consists of a
diminner of 2048, dimmodel of 512, and dimemb of 512. We
use 8 heads for multi-head attention. In total, our model has
around 10.2M parameters. For both the MAML and joint train-
ing models, we end the training process after 200k iterations. In
the pre-training setting, we pre-train the model using the Lib-
riSpeech dataset for 1M iterations and resume the training us-
ing the CommonVoice dataset subsequently for other 100k iter-
ations for all approaches. During the fine-tuning step, we run
ten iterations for each sample. We evaluate our model using a
beam search with η = 1, γ = 0.1, and a beam size of 5. In the
pre-training setting, we downsample the CommonVoice speech
data to 16 kHz following the LibriSpeech dataset audio sample
rate.

1We use CommonVoice Version 2 data (June 2019).
2The LibriSpeech dataset can be downloaded at

http://www.openslr.org/12/, and the list of LibriVox accents can
be found at https://wiki.librivox.org/index.php/Accents_Table

Figure 3: Few-shot results on Philippines accent in the mixed-
region setting.

We train and evaluate the effectiveness of our fast adapta-
tion method in two settings: (1) mixed-region, and (2) cross-
region. The former is to train on ten accents, such as af, au,
ca, en, hk, in, ir, my, nz, sa, sc, sg, and us, sampled from all
regions, and we validate the model on the ca, sc, and sa accents
and test it on the be, ph, and wa accents. The latter setting is to
train on five accents, such as au, en, ir, nz, and us, from spe-
cific regions, and we validate the model on the ca, sc, and sa
accents, and test it on the af, hk, in, ph, and sg accents, which
come from other regions. We evaluate the model performance
using the word error rate (WER) and run experiments ten times
using different test folds. Each fold consists of 100 data ran-
domly sampled from the test data. In the few-shot scenarios, we
split the test accents data into training and testing sets. 75% of
the data are allocated for training, and the remainder for testing.
3 We report the average and standard error of all folds in the
zero-shot (0%-shot), 5%-shot, 25%-shot, and all-shot (100%-
shot) settings. In addition, we also investigate the usefulness of
pre-training on a large English corpus and fine-tune the model.

5. Results and Discussion
5.1. Quantitative Analysis

As shown in Table 2, MAML consistently outperforms joint
training in the mixed-region setting. The approach yields up
to a 4% WER margin in the zero-shot and few-shot settings. In
general, for both MAML and joint training, by adding more data
on fine-tuning, the WER drops at a constant rate. Using the pre-
trained model on the LibriSpeech dataset significantly boosts
the performance of all models by around 5% to 8% WER. In
the all-shot setting, the results are similar to those in the 5%-

3We release our code at https://github.com/audioku/cross-accent-
maml-asr
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Table 3: Average Word Error Rate (% WER) with Standard Error (SE) results in the cross-region setting.

accents MAML Joint Training
zero-shot 5%-shot 25%-shot all-shot zero-shot 5%-shot 25%-shot all-shot

without pre-training
Africa 40.38 ± 1.11 38.31 ± 1.20 36.36 ± 1.01 34.64 ± 1.01 41.56 ± 1.04 41.40 ± 1.08 39.34 ± 1.34 38.32 ± 1.17

Hong Kong 42.04 ± 0.74 40.20 ± 0.89 38.29 ± 0.78 35.61 ± 0.71 44.84 ± 0.65 44.88 ± 0.67 44.09 ± 0.66 41.28 ± 0.59

India 62.07 ± 0.90 54.60 ± 1.46 51.71 ± 1.06 47.85 ± 1.00 63.09 ± 0.82 56.76 ± 1.08 53.89 ± 1.00 50.73 ± 0.98

Philippines 50.06 ± 0.74 48.17 ± 0.71 47.71 ± 0.78 45.05 ± 0.82 53.22 ± 0.97 52.60 ± 0.99 51.64 ± 0.78 48.12 ± 0.76

Singapore 55.75 ± 0.85 55.76 ± 0.83 54.43 ± 0.68 52.71 ± 1.06 57.87 ± 0.64 57.21 ± 0.67 55.15 ± 0.69 53.59 ± 0.72

with pre-training
Africa 32.63 ± 1.25 31.75 ± 1.19 31.09 ± 1.22 29.75 ± 1.01 34.61 ± 1.22 33.42 ± 1.18 33.12 ± 1.12 31.63 ± 1.13

Hong Kong 36.06 ± 0.56 36.04 ± 0.71 32.38 ± 0.71 32.15 ± 0.62 37.43 ± 0.77 36.51 ± 0.57 35.88 ± 0.51 34.18 ± 0.77

India 54.50 ± 1.41 48.73 ± 1.31 46.15 ± 1.35 43.54 ± 1.35 55.43 ± 1.36 50.52 ± 1.26 48.63 ± 1.32 46.58 ± 1.07

Philippines 43.73 ± 0.94 42.96 ± 1.01 40.80 ± 1.03 40.14 ± 0.98 45.16 ± 0.98 44.64 ± 1.04 42.38 ± 0.88 41.74 ± 0.98

Singapore 49.45 ± 0.55 48.40 ± 0.56 46.62 ± 0.62 46.17 ± 0.67 52.06 ± 0.71 50.48 ± 0.70 49.43 ± 0.69 47.11 ± 0.66

shot and 25%-shot settings. We observe that the WER improve-
ment after applying the pre-trained model for the Wales accent
is higher than for the Bermuda and Philippines accents since
the majority of the LibriSpeech dataset is US accented speech,
which is far more acoustically similar to the accent of Wales
than of Bermuda or the Phillippines.

5.2. Cross-region Performance

We show the cross-region performance in Table 3. As expected,
the WER of the Philippines accent is slightly reduced when we
remove Asian accents from the training data. Interestingly, fo-
cusing only on the results of the Philippines accent, as shown in
Table 2 and Table 3, MAML on the cross-region setting yields
WER performance similar to the joint training on the mixed-
region setting. Based on the empirical results, we can conclude
that MAML is far more accent-agnostic compared to joint train-
ing. In sum, the model trained with MAML performs better than
joint training and learns more accent-invariant representations.

Figure 4: Few-shot results on Philippines accent in the cross-
region setting.

5.3. Effectiveness of Few-Shot Fine-tuning

We investigate the number of samples needed to start showing
performance improvement after fine-tuning. We start by train-
ing the model with a very small number of samples, from one
to ten, where each sample approximately consists of 4 seconds
of audio. We observe that the model cannot adapt to the target
accent with a minuscule amount of data. We believe that our
model is not able to capture the information from a very short
audio sample due to a large acoustic variation in the data. There-

fore, we increase the minimum threshold to 5% of the training
data, and the model starts to adapt to the target accent accord-
ingly.

In Figure 3 and Figure 4, in general, MAML performs bet-
ter than joint training in all settings. By having more target
accented speech data, the model gains higher performance with
a lower WER for both the mixed-accent and cross-accent set-
tings. We observe that MAML is effectively applied to models
without pre-training on the LibriSpeech dataset, and it decays
much faster than joint training.

We further investigate the effectiveness of the fast adapt-
ability of the MAML approach compared to the all-shot set-
ting. As shown in Tables 2 and 3, the MAML approach with
25%-shot fine-tuning performs similarly or even better com-
pared to the joint approach with all-shot fine-tuning, both in
the mixed-accent and cross-accent settings. In the all-shot set-
ting, the MAML approach can further improve the performance
and outperforms the joint training approach in all experiment
settings. In light of the impressive experimental results, we can
infer that MAML has fast adaptability to low-resource unseen
accented data.

6. Conclusions
In this paper, we introduce a cross-accented speech recognition
task derived from an existing dataset, CommonVoice, and es-
tablish a new benchmark for evaluating cross-accented speech
recognition in the mixed-region and cross-region scenarios. We
apply a fast adaptation method via the model-agnostic meta-
learning (MAML) approach to learn a robust speech recognition
system to rapidly adapt to unseen accents. Based on the em-
pirical results, MAML consistently outperforms the joint train-
ing baseline in all settings around 4% WER improvement in
both the mixed-region and cross-region scenarios. Impressively,
MAML leverages less data (25%-shot) and achieves compara-
ble results to joint training with all training data (all-shot). We
also further improve the performance of our model by adding
pre-training on a large speech corpus.
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