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Abstract
Unsupervised domain adaptation using adversarial learning has
shown promise in adapting speech models from a labeled source
domain to an unlabeled target domain. However, prior works
make a strong assumption that the label spaces of source and tar-
get domains are identical, which can be easily violated in real-
world conditions. We present AMLS, an end-to-end architec-
ture that performs Adaptation under Mismatched Label Spaces
using two weighting schemes to separate shared and private
classes in each domain. An evaluation on three speech adap-
tation tasks, namely gender, microphone, and emotion adapta-
tion, shows that AMLS provides significant accuracy gains over
baselines used in speech and vision adaptation tasks. Our con-
tribution paves the way for applying UDA to speech models in
unconstrained settings with no assumptions on the source and
target label spaces.
Index Terms: speech classification, unsupervised domain
adaptation, label space mismatch

1. Introduction
Due to the breakthroughs in supervised deep learning, signifi-
cant progress has been made in speech and audio classification
tasks such as spoken keyword detection [1, 2], emotion recog-
nition [3] and ambient sound classification [4]. However, su-
pervised learning models are susceptible to performance degra-
dation if there is a divergence between training and test data
distributions, a phenomenon known as domain shift [5]. Such
domain shifts can be caused by speaker variability (e.g., accents
[6, 7]), ambient noise [8, 9, 10], channel distortions [11] or mi-
crophone variability [12]. One solution to this problem is to
fine-tune the parameters of a pre-trained model using labeled
data from the test (or target) domain. In practice, however, la-
beled data is often unavailable or could be expensive to collect
in the target domain. These constraints have led to research in
Unsupervised Domain Adaptation (UDA), where the goal is to
adapt a model from a labeled source domain to an unlabeled
target domain. For example, [13] and [14] employed adversar-
ial learning to adapt speech emotion recognition models across
languages and datasets, and [12] proposed adapting keyword
detection models across microphones.

In this paper, we address a fundamental problem in UDA
for speech classification tasks, namely label space mismatch.
Consider a scenario where a model developer has a labeled
dataset of spoken keywords (e.g., Siri, Alexa) from US-English
accent speakers (source domain), and train a keyword detection
classifier with supervised learning. Now, they wish to deploy
this classifier for users with French-English accent (target do-
main) for whom only unlabeled data is available. The accent
variability here is an example of domain shift, which may cause
performance degradation in the target domain. Hence, the de-
veloper can employ UDA to adapt the US-accented model to
the unlabeled French-accented domain.

Figure 1: (a) Identical and (b) Mismatched Label Spaces of
Source and Target Domains. The latter is highly likely in real
applications and is the focus of our work.

At their core, most UDA techniques counter domain shift
by aligning feature representations of source and target do-
mains. However, they make a strong assumption that the la-
bel spaces of the source and target domains are identical – in
our above example, this would mean that the keyword classes
(e.g., Siri, Alexa) must be identical in both source and target
datasets (Figure 1(a)). However, as demonstrated in Fig 1(b),
this assumption can be easily violated in practice, as the source
dataset may contain some keyword classes that are not repre-
sented in the target dataset (e.g., Siri, Cortana) and vice versa
(e.g., Bye, Stop). We refer to these classes as private classes.
This generalized problem setting raises several challenges:

a) Mitigating negative transfer. Prior research has shown that
the presence of private classes in the dataset can lead to negative
transfer [15] in adaptation, whereby the adapted classifier per-
forms even worse than a classifier trained solely on the source
domain. Note that under a UDA setting, as we have no knowl-
edge of target labels, it is impossible to know a priori which
classes are private in the target domain or the source domain.
Therefore, we need a data-driven solution to identify the shared
classes and perform adaptation only between them, while mini-
mizing any negative transfer from private classes.

b) Labeling private target data as ‘unknown’. After under-
going adaptation, when the classifier is deployed in the target
domain, it will encounter target data from shared classes (e.g.,
Alexa) and private classes (e.g., Stop, Bye). While the classifier
can provide labels for the shared class data, it has no knowledge
of private class labels (recall that the target domain is unlabeled)
– hence, ideally private target data should be classified as ‘un-
known’. However, prior works show that neural networks tend
to output high confidence predictions even for irrelevant or un-
recognizable inputs [16, 17, 18]. This, in turn, means that pri-
vate target instances may get incorrectly labeled as belonging to
one of the source classes.

In this work, we first quantify the impact of label space
mismatch on speech-based UDA tasks. Then we present our
solution, Adaptation under Mismatched Label Spaces (AMLS)
wherein our key contribution is in proposing a weighting
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Figure 2: Architecture of AMLS. Solid boxes represent neural
networks and circles denote the losses that are optimized.

scheme to down-weigh the contribution of private classes and
enhance that of shared classes in the adaptation process to
counter negative transfer. At the same time, AMLS can accu-
rately identify private target classes and classify them as ‘Un-
known’. We evaluate AMLS on three tasks: i) gender adap-
tation in spoken keyword detection, ii) microphone adaptation
in spoken keyword detection, and iii) cross-dataset adaptation
in speech emotion recognition. Our results show that AMLS
outperforms state-of-the-art UDA baselines on all the tasks.

2. Related Work
There is rich literature on training acoustic models robust to
real-world variability in speech data. Prior works have studied
speaker adaptation using student-teacher learning [19], by do-
ing speaker-adaptive training using i-vectors [20], or by using
i-vectors extracted from anchor embeddings [21]. Other works
include training noise-robust acoustic models using data aug-
mentation [22] or by layer-wise feature representation match-
ing [23]. Many of these techniques rely on the availability of
parallel or labeled data in the target domain.

As acquiring labeled data in a target domain is expensive,
there has been an increased focus on using adversarial UDA to
adapt acoustic models to target domains, without requiring tar-
get labels [24, 25]. Importantly, adversarial UDA techniques
also provide a common framework to model different types of
adaptation tasks, e.g., cross-lingual emotion adaptation [14],
cross-lingual keyword spotting [25], cross-gender ASR [24] and
noisy speech adaptation in ASR [26, 27]. We extend these prior
works by addressing the critical and previously unaddressed is-
sue of label space mismatch in speech classification tasks.

There have been works in computer vision on label space
mismatch, which have addressed the presence of private classes
in either source [28] or target domains [29, 30]. Recently, You
et al. [31] studied the scenario of label space mismatch for vi-
sion tasks. They proposed universal adaptation network (UAN),
an architecture that combines prediction entropy and domain
similarity into a common metric to separate shared and pri-
vate classes, and shows promising performance of various vi-
sion adaptation tasks. Our work builds on UAN (which we use
as a baseline in our experiments) and we show that using our
proposed weighting scheme, we can achieve performance im-
provements over UAN in multiple speech classification tasks.

3. Adaptation under Mismatched Label
Spaces (AMLS)

Problem Formulation. We are given a source domain with in-
puts XS and labels YS sampled from a probability distribution
p, and a target domain with inputs XT sampled from a marginal
distribution q. No labels are available from the target domain
during training. For consistency with prior work, we denote
the label sets of the source and target domains as CS and CT

respectively. The set of classes shared between source and tar-

get domains are denoted by Cshared = CS ∩ CT . Finally, CS =
CS \ CT and CT = CT \ CS represent the private label sets of
the source and the target domains. Let p∩ and p∗ respectively
denote the distribution of source data with label sets Cshared and
CS . Let q∩ and q∗ respectively denote the distribution of target
data with label sets Cshared and CT . It is worth reiterating that
since we have no knowledge of the target labels during training,
it is not possible to know CT , Cshared, CS or CT a priori, as they
all depend on the knowledge of target label set.

Our goal is to learn a classifier using domain adaptation
which: (i) provides accurate inferences for target data from
shared classes Cshared under the presence of domain shift, (ii)
mitigates the negative transfer caused by private classes CS and
CT in the adaptation process, and (iii) assigns an ‘Unknown’
label to data instances from the private target classes CT .

Solution. We propose AMLS, an end-to-end architecture for
UDA under the presence of label space mismatch. As dis-
cussed, the core challenge here comes from the presence of pri-
vate classes in both domains, which may lead to negative trans-
fer. Intuitively, this negative transfer can be mitigated if we can
isolate the shared classes Cshared and only align their feature rep-
resentations, while ignoring or down-weighing the contribution
of the data from private classes during adaptation.

Figure 2 illustrates our proposed architecture for AMLS.
Similar to prior works, our solution consists of a feature ex-
tractor F , a classifier G and an adversarial discriminator Dadv.
When an input x is fed to this architecture, a feature repre-
sentation z = F (x) is obtained. The extracted features are
then passed to G to obtain a softmax probability distribution
ŷ = G(z) over the source labels CS . The classifier G is trained
on source labeled data using a supervised cross-entropy loss as:

Lcls = −E(xs,ys)∼p

K∑
k=1

[k=ys][log(G(F (xs))] (1)

Next, the task of aligning feature representations of source
and target domains is performed by Dadv using adversarial
learning. In vanilla UDA, Dadv would align the representations
over the entire label space, however, this can lead to negative
transfer due to the presence of private classes. One way to mit-
igate this challenge is to force Dadv to give higher importance
(or weights) to the shared classes in the feature alignment pro-
cess as compared to the private classes. Thus, the (weighted)
adversarial loss formulation for Dadv is:

Ladv = −E(xs,ys)∼p[δ
S(xs) log(Dadv(F (xs))]

− Ext∼q[δ
T(xt) log(1−Dadv(F (xt))] (2)

where δS and δT are the weights to be assigned to a source and
target sample respectively in the adaptation process. We would
like to assign higher weights to samples from shared classes and
lower weights to private samples. Formally, these criteria are:

0 ≤ Exs∼p∗δ
S(xs) < Exs∼p∩δ

S(xs) ≤ 1 (3)

0 ≤ Ext∼q∗δ
T (xt) < Ext∼q∩δ

T (xt) ≤ 1 (4)

The key contribution and technical novelty of our work is in
proposing a robust technique to estimate δS and δT .

Estimating Target Weights. When an input xt from target do-
main is fed to the classifier G, we get a probability distribution
over the source class set CS in the form of softmax outputs.

ŷt = G(F (xt))
We hypothesize that the classifier G will be more confident

in its predictions ŷt for inputs from the shared classes Cshared as
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compared to those from the private classes CT . This is a reason-
able hypothesis because despite the presence of domain shift,
classes in Cshared are likely to be closer to the source domain
as compared to the private classes CT . Hence, any measure of
prediction confidence that satisfy Equation 4 can be used as a
weighting function to separate Cshared and CT .

We propose to employ Maximum Margin (MM) as a crite-
rion for classifier confidence. Margin Sampling [32] is a well-
known technique in active learning to sample data instances for
which a classifier is least confident. Formally, Margin M is de-
fined as M(xt) = ŷ1

t − ŷ2
t , where ŷ1

t and ŷ2
t represent the high-

est and second-highest softmax outputs in ŷt. When a classifier
has high confidence about its top prediction, M will be high.
On the contrary, for a data sample for which a classifier is less
confident, M , that is the difference between top two softmax
outputs will be low. Equation 5 follows from this logic.

0 ≤ Ext∼q∗M(xt) < Ext∼q∩M(xt) ≤ 1 (5)

It is easy to observe that the MM formulation satisfies the
target weighting criterion in Eq. 4. However, due to the pres-
ence of domain shift, the margins obtained on target data could
be noisy and may lead to incorrect weights for target samples.
As such, in addition to the margins, we also propose to em-
ploy a domain discriminator to separate private and shared tar-
get classes. To this end, we train another domain discrimina-
tor D0 to separate samples from source and target domains.
More specifically, we assign a label=1 to the source data and
label=0 to the target data, and train the discriminator using the
Binary Cross-Entropy loss. Once trained, we hypothesize that
D0 would output a higher score to samples from the shared tar-
get classes as they have more similarity with the source domain,
and hence we can expect the following to hold true when target
domain data is fed to D0.

0 ≤ Ext∼q∗D0(xt) < Ext∼q∩D0(xt) ≤ 1 (6)

The use of both margin and discriminator signals to esti-
mate target weights can potentially offset any noise in one of
the measurements; as such, we use δT (xt) = 0.5 ∗ (M(xt) +
D0(xt)) which indeed satisfies the weighting criterion in Eq. 4.

Estimating Source Weights. To estimate the source weights,
we leverage another interesting property of ŷt. Recall that ŷt
is a probability distribution over the source label space CS , de-
noting the probability of a target sample xt belonging to dif-
ferent classes in the source set CS . We hypothesize that source
classes Cshared which are shared with the target domain will be
given higher probabilities in ŷt and the private source classes
CS will have lower probabilities. This is reasonable because
target data xt has no overlap with private source classes, hence
the classifier should estimate low probabilities for CS . Thus,
by observing the probability distribution over classes, we can
potentially distinguish shared and private source classes and as-
sign appropriate weights to them.

However, due to presence of samples from private target
classes, these class probabilities could be noisy. To address this,
we use the target weights obtained earlier to calculate instance-
weighted class probabilities and average them over an entire
batch B of data to obtain the mean class probability vector η.

η =
1

|B|
|B|∑
i=1

G(F (xi
t)) ∗ δT (xi

t) (7)

Effectively, η could be interpreted as a |Cshared|-dimensional
vector reflecting the relative weight of each source class in a
given batch. We set the source weights δS(xs) = ηys and ex-

pect that samples from shared source classes will be assigned
higher weights than samples from private source classes. It
can be verified that this weighting scheme satisfies the source
weighting criterion specified in Eq. 3.

Training Pipeline. Now we are ready to explain the end-to-end
training pipeline of AMLS. As with other adversarial training
architectures, we jointly optimize the classification loss on the
labeled source domain Lcls along with the weighted adversarial
loss Ladv shown in Equation 2 where the source weights δS and
target weights δT are calculated as described above.

In addition, we also propose to generate pseudo labels [33]
for the target data and use supervised learning to further refine
the classifier for use in target domain. However, the challenge
with using pseudo-labels is that in the presence of label mis-
match, it can lead to severe negative transfer if the pseudo-labels
are inaccurate. We alleviate this challenge by leveraging the
target weights δT that were estimated earlier and only perform
pseudo-label based supervised training on target samples whose
weights are above a certain threshold δp. Formally, the pseudo
label classification loss can be expressed as follows:

Lpseudo = −Ext∼q

[
[δ(xt)>δp].

K∑
k=1

[k=argmax(ŷt)][log(ŷt)]

]

Putting them together, the combined optimization objective
of AMLS is:

max
Dadv

min
F,G

Lcls + λLpseudo − Ladv

Inference Pipeline. Given a target sample xt, we first compute
its weight δT (xt) = 0.5 ∗ (M(xt) + D0(xt)). If the weight
is below a threshold δ0, it is likely that this sample belongs to
a private class and hence we label it as ‘Unknown’. Otherwise,
we compute ŷt = G(F (xt)) and output argmax(ŷt) as its label.
Note that λ, δ0 and δp are hyperparameters that are tuned using
cross-validation.

4. Evaluation
We now describe our evaluation setup and results.

Tasks and Datasets. AMLS is evaluated on three speech adap-
tation tasks. (i) Gender Adaptation: We study cross-gender
adaptation in a Keyword Classification model. For this, we use
the Spoken Keywords dataset [34] consisting of >100k speech
utterances from 35 keyword classes (e.g., Yes, Right), and parti-
tion it based on the speaker’s gender (obtained through a crowd-
sourced gender-labeling exercise). The partitions, Male (M)
and Female(F), represent different domains and we show results
for M→F and F→M adaptation. (ii) Microphone Adaptation:
We use the Mic2Mic dataset [12] which has spoken keyword
recordings from 31 classes simultaneously recorded on multi-
ple microphones such as Matrix Voice (M), ReSpeaker (R) and
USB (U). Each microphone represents a domain and the task is
to adapt a keyword detection model trained on a source micro-
phone to a target microphone. We pick M→R and U→M as the
adaptation tasks. (iii) Dataset Adaptation: Finally, we evaluate
a challenging task of adapting a speech emotion classification
model trained on a source dataset (CREMAD [35]) to a target
dataset (RAVDESS [36]) collected in a completely different en-
vironment. Here, the datasets represent different domains and
we evaluate the CREMAD→RAVDESS task.

Model Architectures. In line with prior works [37, 1], we use
convolutional neural networks (CNNs) to build the Keyword
Classification (KC) and Emotion Classification (EC) models.
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Gender
Adaptation

Microphone
Adaptation Emotion

M→F F→M M→R U→M C→R
Source 41.41 35.04 40.11 42.44 35.2

ADDA 41.54 28.90 39.21 39.29 30.0

DANN 40.13 29.85 40.19 42.33 28.18

UAN 66.13 60.82 66.30 67.20 38.96

AMLS 73.78 64.1 69.02 68.77 41.45

Table 1: Target domain accuracy averaged over
shared (Cshared) and private (CT ) classes. AMLS sig-
nificantly outperforms ADDA and DANN and also
provides gains over state-of-the-art UAN technique. -30%
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The inputs to these models are two-dimensional tensors ex-
tracted from speech utterances, consisting of time frames on
one axis and 40 MFCC features on the other axis. The archi-
tectures are as follows: for KC, feature extractor F : [Conv:
{64,64,64}], classifier G: [FC: {256, 128}] where Conv repre-
sents the number of convolution kernels in each layer and FC
denotes the number of units in each hidden layer. For EC, fea-
ture extractor F : [Conv: {128, 64,64,64}], classifier G: [FC:
{256, 128}]. The architecture for Dadv and D0 is [FC: {128,
128}]. Our system is implemented in TensorFlow 2.0.

Evaluation Protocol. We follow the same evaluation protocol
as earlier uDA works [31]: 80% of the unlabeled data from the
target domain is used during adaptation, and the adapted model
is tested on 20% held-out target test set. We report the average
accuracy across all target classes, including the private target
classes whose ground truth is set to ‘Unknown’.

Baselines. AMLS is compared with four baselines: i) Source
Only where the target data is tested with the source domain
model, without adaptation, ii) ADDA [38], iii) DANN [39] and
iv) UAN [31]. ADDA and DANN are well-known UDA tech-
niques, but do not consider label space mismatch – hence,
they serve as representative baselines for existing speech UDA
works. UAN is designed for vision tasks to handle label space
mismatch and hence is an appropriate state-of-the-art baseline.

Results. For our experiments, we partition the label space
into source and target domains in order to simulate label
space mismatch. For the Gender Adaptation task on the Spo-
ken Keyword dataset, we assign a class number to each key-
word class as per alphabetical order, e.g., the first class in
alphabetical order is assigned label=‘1’ and so on. There-
after, we randomly sample 20 classes from the complete label
set without replacement and consider them as source classes
CS . The remaining 15 classes are considered as private tar-
get classes CT . Next, we randomly sample 10 classes from
CS and consider them as the shared classes Cshared between
source and target domains. Based on this partitioning, we
obtain CS = {33, 3, 7, 8, 10, 14, 20, 21, 23, 26}, Cshared =
{4, 5, 9, 11, 12, 15, 17, 24, 27, 28} and remaining classes are in
CT . In Table 1, we report the target test accuracy for this
configuration averaged over shared and private classes. When
adapting a keyword model trained on Male speakers to Female
speakers (M→F) and vice-versa (F→M), we observe that the
accuracy of ADDA and DANN is similar or even lower than
the source-only baseline, confirming the occurrence of negative
transfer. Both UAN and AMLS significantly boost the target
performance, with AMLS providing accuracy gains between 3-

7% over UAN. Further, Figure 3 (left) illustrates the relative
change in the target domain accuracy of different shared classes
after adaptation. We can observe that DANN results in a neg-
ative transfer for several classes such as 11 and 12, which is
countered by AMLS.

For Microphone Adaptation, we use a similar
scheme of partitioning the label space and obtain
CS = {1, 3, 5, 9, 10, 11, 12, 22, 25, 28}, Cshared =
{6, 8, 14, 16, 21, 23, 24, 27, 29, 30} and remaining classes are
in CT . From Table 1, we again observe negative transfer during
adaptation, as ADDA and DANN perform worse than the
source model in some cases. Both UAN and AMLS manage
to mitigate negative transfer, with AMLS outperforming UAN
by 1.5-3%. Next, for Emotion Adaptation with 7 classes, we
use Cshared = {Calm, Angry, Fear}, CS = {Happy, Sad} and
CT = {Disgust, Surprise}. We again observe negative transfer
for ADDA and DANN, and AMLS provided 11-13% accuracy
gain over them.

Finally, we compare AMLS with the baselines as the size
of shared label space increases. We start with the extreme mis-
match scenario (|Cshared| = 1) and gradually increase the number
of shared classes. In Figure 3 (right), we observe that when
label space mismatch is high, ADDA and DANN baselines per-
form poorly due to negative transfer and inability to classify
private target classes as ‘Unknown’. UAN and AMLS provide
significant gains in these scenarios, with AMLS outperforming
UAN in all settings. As the label set mismatch reduces, the per-
formances of ADDA and DANN improve significantly, however
UAN and AMLS still outperform them. In the other extreme
case of no label space mismatch (not shown in the figure), all
the adaptation techniques converge to similar accuracies.

5. Conclusion
We presented AMLS, an end-to-end UDA architecture that
works under the scenario of label space mismatch, and outper-
forms existing methods (those used in prior speech works as
well in recent computer vision literature) on three adaptation
tasks. Our contribution paves the way for speech adaptation al-
gorithms to work in more unconstrained settings by placing no
assumption on source and target label spaces.

In future work, we will extend our problem formulation to
ASR tasks (e.g., speaker adaptation in ASR) and evaluate the ef-
ficacy of AMLS. Future work could also explore how purpose-
built features (e.g., speaker i-vectors) can be incorporated to
learn robust domain-invariant representations under label space
mismatch.

Figure 3: (left) Relative change in per-class accuracy of 
shared target classes after adaptation. Severe negative 
transfer can be observed in DANN. (right) Comparison of 
different UDA approaches as |Cshared| varies. Both experiments 
are done for the M→F Gender Adaptation task. 
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