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Abstract
In this paper, we propose a new speaker normalization tech-
nique for acoustic model adaptation in connectionist temporal
classification (CTC)-based automatic speech recognition. In the
proposed method, for the inputs of a hidden layer, the mean
and variance of each activation are first estimated at the speaker
level. Then, we normalize each speaker representation indepen-
dently by making them follow a standard normal distribution.
Furthermore, we propose using an auxiliary network to dynam-
ically generate the scaling and shifting parameters of speaker
normalization, and an attention mechanism is introduced to im-
prove performance. The experiments are conducted on the pub-
lic Chinese dataset AISHELL-1. Our proposed methods present
high effectiveness in adapting the CTC model, achieving up
to 17.5% character error rate improvement over the speaker-
independent (SI) model.

Index Terms: speaker normalization, speech recognition, con-
nectionist temporal classification

1. Introduction
With the widespread use of deep learning in automatic speech
recognition (ASR), recognition accuracy has been greatly im-
proved over the past several years [1, 2]. However, the perfor-
mance of deep neural network (DNN)-based ASR will still de-
teriorate under the mismatches between training and test condi-
tions, which are caused by the different characteristics of acous-
tic variability, such as speakers, channels and environmental
noise. In ASR, speaker normalization (SN) techniques are used
to minimize the mismatch between the training and testing con-
ditions due to speaker variability. Typical normalization tech-
niques transform the model to match the testing condition or
the inputs to match the model.

Speaker normalization techniques for DNNs can be catego-
rized into two broad approaches: adaptation and adaptive train-
ing. Speaker adaptation methods address speaker variability by
estimating speaker-dependent (SD) parameters from a trained
speaker-independent (SI) model on additional adaptation data.
Speaker adaptive training attempts to address the speaker mis-
match during training on the fly.

For the adaptation method, a straightforward idea is to re-
train all SI model parameters. To avoid overfitting, regular-
ization approaches such as L2 regularization using weight de-
cay [3], Kullback-Leibler divergence (KLD) [4] and adversar-
ial multitask learning (MTL) [5] were proposed. There are also
many approaches in which only small subsets of the network pa-
rameters are adapted [6, 7, 8]. Recently, adaptation schemes us-
ing parameterized hidden activation functions have been widely
explored [9, 10, 11] and have achieved good improvements.

In adaptive training, a traditional technique is to transform
the acoustic features to a normalized space, and then the adapted
features are used to train DNN models. Typical methods in-

clude MLLR transforms and the feature-space variant (fMLLR)
[12, 13]. Another effective method is to provide the network
with auxiliary features that characterize speaker information
such as i-vector [14, 15, 16] and speaker code [17, 18]. In
addition, cluster adaptive training (CAT) has been applied for
speaker normalization [19, 20].

Despite the great success of these methods in hybrid sys-
tems, there has been limited investigation in speaker normaliza-
tion for the end-to-end (E2E) ASR. In [21], two regularization-
based approaches were shown to be effective for connection-
ist temporal classification (CTC) [22]-based E2E ASR. In [23],
several conventional adaptation methods were integrated to
adapt the attention-based encoder-decoder (AED) model.

In this paper, we propose a novel speaker normalization
technique for CTC-based ASR. The CTC models take all ut-
terances as input and produce a sequence of activations. These
allow us to make use of better context modeling capabilities and
statistical information of hidden activations for a speaker. Addi-
tionally, inspired by the idea of batch normalization (BN) [24],
we propose to normalize each speaker representation indepen-
dently by making each activation follow the standard normal
distribution. The mean and variance of each activation are esti-
mated at the speaker level. Then, a pair of scaling and shifting
parameters are introduced to transform the normalized value,
which are learned along with the original model parameters.
Furthermore, motivated by dynamic layer normalization (DLN)
[25] and attentive batch normalization (ABN) [26], we also use
an auxiliary network with an attention mechanism to dynam-
ically generate the normalization parameters, which we call
adaptive speaker normalization (ASN). However, unlike DLN
and ABN, we propose to generate the parameters at the batch
level and at the speaker level to fulfill speaker adaptation. We
evaluated the proposed algorithms on the AISHELL-1 corpus
[27], an open-source Mandarin ASR task. Experimental results
show that the proposed methods present high effectiveness in
adapting the CTC model, achieving up to 17.5% character er-
ror rate (CER) improvement over the speaker-independent (SI)
model.

2. Relation to prior work
Well-known normalization techniques for reducing the train-
test mismatch include the application of input normalization,
such as the mean normalization (MN) [28] and mean and vari-
ance normalization (MVN) [29]. MN assumes that the data
mean is invariant, and MVN uses the stronger assumption that
the mean and variance of data are invariant, so standardizing
the mean and/or variance removes irrelevant information [30].
In deep learning, un-normalized features with greater variance
dominate the DNN learning process, so scaling the inputs is a
standard procedure that can improve DNN performance.

Similar normalization techniques can be found in DNN
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training. Batch normalization (BN)[24] and layer normaliza-
tion (LN) [31] are two well-known methods for normalizing the
activations of the hidden layers. BN was originally designed to
alleviate the issue of internal covariate shifting, a common prob-
lem in DNN training. BN addresses the problem by normalizing
each dimension of activations in a mini-batch by making it fol-
low a standard normal distribution. LN has the same idea as
batch normalization, but the difference is that LN normalizes
each node of a neural layer, which is independent of the size of
each batch.

However, BN or LN is a DNN training technique that is
not targeted at speaker adaptation. There has still been limited
investigation in speaker adaptation using similar normalization
techniques. In [32], researchers used the auxiliary network to
learn speaker-specific information and then performed normal-
ization at the speaker level. Although the method achieves a
lower word error rate (WER) than the unadapted models, it only
uses the mean information of activations and performs normal-
ization at a specific layer. The novelty of our proposed methods
lies in the following aspects: first, we use the idea of BN to per-
form normalization for activations at the speaker level, which
is layer-wise and makes use of the mean and variance infor-
mation of activations. Furthermore, we introduce an attention
mechanism to the auxiliary network and use it to dynamically
generate the normalization parameters. Finally, we investigate
our approaches in connectionist temporal classification (CTC)-
based end-to-end speech recognition and demonstrate competi-
tive performance in the speaker-adapted scenario.

3. Proposed methods
We first introduce the modified speaker normalization (SN)
method in speech recognition. Moreover, its application in Bi-
LSTM is discussed. In the following sections, the details of the
proposed speaker-level and batch-level adaptive speaker nor-
malization (ASN) are discussed.

3.1. Speaker normalization

For a neural layer with p-dimensional input feature xs =

{x(1)
s , ..., x

(i)
s , ..., x

(p)
s }, where s means the feature belongs to a

certain speaker s, the proposed speaker normalization for each
dimension is defined as:

x̂(i)
s =

x
(i)
s − E[x

(i)
s ]√

Var[x
(i)
s ]

(1)

where the expectation E[x
(i)
s ] and variance Var[x

(i)
s ] are com-

puted over all training samples belonging to speaker s.
However, in most instances, training DNNs uses stochastic

optimization. Parameter updates are on a mini-batch basis. It is
impractical to use the whole set to normalize activations. There-
fore, we make the simplification as BN that each mini-batch
produces estimates of the mean and variance in each activation
of speaker s. Eq. (1) is rewritten as:

x̂(i)
s =

x
(i)
s − μs√
σ2
s + ε

(2)

where ε is a small positive constant to prevent numerical insta-
bility, and the mini-batch speaker mean μs and variance σs are
given by

μs =
1∑

k 1[sk = s]

∑
k

1[sk = s]xk (3)

and

σ2
s =

1∑
k 1[sk = s]

∑
k

1[sk = s](xk − μs)
2

(4)

where sk denotes the speaker label of the kth sample in the
mini-batch and 1[.] is the indicator function that evaluates to 1
when its argument holds.

However, according to BN, simply normalizing each input
of a layer may change what the layer can represent. To account
for this, we also introduce additional learnable parameters γ and
β, which respectively scale and shift the normalized activation
to enhance the representational power of the layer, leading to a
layer of the form:

y(i)s = γ(i)x̂(i)
s + β(i)

(5)

where γ and β are parameters to be trained along with the orig-
inal model parameters. By setting γ(i) to σs and β(i) to μs, the
network can recover the original layer representation.

Note that SN normalizes the activations at the speaker level,
which can be considered a subset of BN. When all samples of a
mini-batch belong to the same speaker, SN is equal to the stan-
dard BN. However, the proposed SN may solve the drawbacks
of BN to some extent. According to [33], the effectiveness of
BN diminishes when the training mini-batches are small or do
not consist of independent samples. For small mini-batches, the
estimates of the mean and variance become less accurate. These
inaccuracies are compounded with depth and reduce the qual-
ity of the resulting models. In SN, however, we estimate the
mean and variance of each speaker instead of the entire training
set. This allows us to make more accurate estimates from acti-
vations in smaller batches. In addition, similar to the definition
of BN, SN also requires that the samples have the assumption
of independent and identical distribution (i.i.d.). However, the
connectionist temporal classification (CTC) [22] criterion has
the same assumptions of i.i.d., which makes the proposed SN
better match the scenario of CTC-based ASR.

For a standard feedforward layer in a neural network,
speaker normalization can be applied easily before an arbitrary
activation function as in BN. However, we are more concerned
with its application in the long short-term memory (LSTM)
model since LSTM is widely used to model the temporal in-
formation of acoustic features in speech recognition, especially
in CTC-based speech recognition. However, according to the
investigations in BN, it is quite challenging to perform normal-
ization in such recurrent neural networks due to their compli-
cated framework. In this paper, we apply speaker normalization
to the input-to-hidden transitions of LSTMs as the researchers
did in [34]. This has proven to be effective in our experiments.
For a bidirectional LSTM, speaker normalization is equally ap-
plied to the forward and backward LSTM.

3.2. Adaptive speaker normalization

The scaling and shifting parameters of SN can be computed at
the speaker level and batch level, respectively. For the speaker-
level strategy, normalizing activations of each speaker corre-
sponds with specific scaling and shifting parameters. For the
batch-level strategy, one pair of scaling and shifting parameters
are generated for all mini-batch samples.

3.2.1. Speaker level

Assume that hl−1
t denotes the p-dimensional hidden activation

of the l − 1th layer at time step t. For the normalization pa-

1267



rameter generation network, a nonlinear transformation is first
applied to the normalized hidden activation as:

gl−1
t = tanh(Wgh

l−1
t + bg) (6)

where Wg is a dg × p weight matrix and dg is set to be less
than p. This nonlinear transformation is designed to project the
hidden activation to a low dimensional space. In this way, the
computational cost of the auxiliary network can be greatly re-
duced.

We use the weighted summation of all frames belonging
to speaker s to generate the normalization parameters for that
speaker. The mean of all the elements in gl−1

t can measure the
importance of the tth frame-level representation. With the soft-
max function, the attention weight for each frame of the speaker
s can be calculated as:

αs,t =
exp(mean(gl−1

s,t ))∑
τ 1[sτ = s] exp(mean(gl−1

τ ))
(7)

where sτ denotes the speaker label of the τ th frame in the mini-
batch and 1[.] is the indicator function that evaluates to 1 when
its argument holds.

The context vector of speaker s can be easily computed with
αs,t serving as the combination weights.

cs =
∑
t

αs,t1[st = s]gl−1
t (8)

Finally, the scaling and shifting parameters for speaker s
are generated as a linear transformation of the context vector:

γl
s = Wl

γcs + bl
γ (9)

βl
s = Wl

βcs + bl
β (10)

Assume ĥl−1
s,t denotes the activation normalized by the

mean and variance of speaker s. The final speaker normalized
activation is given by

h̃l
s,t = ĥl−1

s,t � γl
s + βl

s (11)

where � denotes the elementwise product.

3.2.2. Batch level

In batch-level speaker normalization, all activations of all
speakers in the mini-batch share one pair of scaling and shifting
parameters indiscriminately as with the standard format. The
difference is that the parameters are dynamically generated by
the activations.

A straightforward idea is to use the weighted mean of all
activated frames to generate the parameters. Then, Eq. (7) and
Eq. (8) are rewritten as:

αt =
exp(mean(gl−1

t ))∑
τ exp(mean(gl−1

τ ))
(12)

c =
∑
t

αtg
l−1
t (13)

where the symbols denote the same meaning as above. Then,
the context vector is used to generate the scaling and shifting
parameters as Eq. (9-10).

To take advantage of the discriminative information among
different speakers, we further propose speaker interclass atten-
tion to combine the activations of different speakers. After the

context vectors of all speakers are computed in Eq. (8). The at-
tention weight for each speaker context vector can be calculated
as:

αs =
exp(mean(cs))∑
m exp(mean(cm))

(14)

where m denotes the mth speaker in the mini-batch.
Then, the weighted mean of all speaker context vectors is

formed with αs serving as the combination weights:

u =
∑
s

αscs (15)

Finally, the weighted mean is used to generate the scaling
and shifting parameters as Eq. (9-10).

4. Experiments
4.1. Dataset

We evaluated our proposed methods on an open-source Man-
darin speech corpus AISHELL-1 [27]. All speech files are sam-
pled at 16 K Hz with 16 bits. We trained our models on the
training set which contains 150 hours of speech (120,098 utter-
ances) recorded by 340 speakers. The development set contains
20 hours of speech (14,326 utterances) recorded by 40 speak-
ers was used for early-stopping. And the test set contains 10
hours of speech (7,176 utterances) recorded by 20 speakers was
used for the final evaluation. The speakers of the training set,
development set, and test set are not overlapped.

4.2. SI system

We used connectionist temporal classification (CTC)-based
speech recognition systems in our experiments. The input
acoustic feature was 108-dimensional filter-bank features (36
filter-bank features, delta coefficients, and delta-delta coeffi-
cients) with mean and variance normalization. All neural acous-
tic models in the experiments had three bidirectional LSTM
hidden layers with 512 LSTM cells. To improve recognition
performance and training efficiency, we appended a convolu-
tional neural network (CNN) before the LSTM layers. For the
SI model, the bottom two layers were 2D convolution layers
with output channels of 64 and 256. Each convolution layer
was followed by a max-pooling layer with a stride of 2 in the
time dimension for finally downsampling utterances to a quar-
ter of the original length. We used a dropout rate of 0.3 for the
LSTM layers to avoid overfitting.

For the output of the Mandarin acoustic model, according to
the statistical information of the transcripts, we collected 4,294
Chinese characters in the training and development sets. With
the special symbol blank involved, 4,295 modeling units were
used for the output inference. Additionally, to further improve
the performance of the SI model, the trigram language model,
which was trained by using the transcription of the training set,
was used in the decoding procedure.

4.3. Network training setups

The CTC-based acoustic model used the whole utterance as in-
put, while utterances varied in length. Therefore, we sorted
all the utterances of the training set in descending order by
length. For the input features of the network, each utterance
was represented as a sequence of frames. We set a maximum
number of frames of fmax to control the batch size. The num-
ber of utterances included in each mini-batch was fmax/lmax,
where/means rounding operation, and lmax denotes the length

1268



Table 1: The CERs (%) of SI and SN models under different
learning rates. “–“ denotes that the model did not converge.

Learning rate 0.0001 0.0002 0.0004

SI 9.96 - -

SN 9.44 9.04 8.89

of the longest utterance of the mini-batch. All utterances whose
lengths were less than lmax were unified by a zero-padding op-
eration. Therefore, the size of each mini-batch was variable but
did not exceed fmax.

PyTorch toolkits [35] were used in our model training pro-
cess. All the model parameters were randomly initialized and
updated by Adam [36]. The network was trained to minimize
the CTC loss function with an initial learning rate of 0.0001.
The development set was used for learning rate scheduling and
early stopping. We started to halve the learning rate when the
relative improvement fell below 0.004, and the training ended if
the relative improvement was lower than 0.0005.

4.4. Results of SN

The standard speaker normalization described in section 3.1
was first applied to the input of all LSTM layers. We investi-
gated the effect of normalization on the learning rate of network
training, where fmax was set to 5,000.

Table 1 shows the character error rate (CER) of different
acoustic models with and without speaker normalization under
different initial learning rates. It can be seen that with a learning
rate greater than 0.0001, the model without speaker normaliza-
tion did not converge. The model with speaker normalization
obtained a 5.2% reduction in CER under a small learning rate of
0.0001. In the case of a larger learning rate, the speaker normal-
ized model significantly outperformed the SI model, achieving
a CER of 8.89% and up to 10.7% relative improvement.

According to the analysis of Table 1, we found that standard
speaker normalization enables higher learning rates and makes
the model perform better. Speaker normalization makes model
training more resilient to the parameter scale. Normally, large
learning rates may increase the scale of layer parameters, which
then amplify the gradient during backpropagation and lead to
model explosion. However, with speaker normalization, back-
propagation through a layer is unaffected by the scale of its pa-
rameters.

We further explored the influence of batch size during
model training. Since SN uses similar ideas as BN, we com-
pared the proposed SN with the BN algorithm. The initial learn-
ing rates for the SN and BN models were set to 0.0002. As
shown in Table 2, in the case of a smaller batch size, BN greatly
deteriorated the ASR performance. This is an inherent flaw
of BN, as mentioned in [39]. For the proposed SN, a smaller
batch size had little impact on the model performance, result-
ing in a comparable performance with a favorable batch size of
5,000. This shows that SN can allow the model to be trained at a
smaller batch size without significantly reducing performance,
thereby adapting to scenarios with sparse data.

Table 2: The CERs (%) of the SN and BN models with different
training batch sizes.

Batch size(fmax) 2000 5000 8000

SN 10.97 9.71 9.90

BN 9.01 9.04 9.38

4.5. Results of ASN

In the ASN model, the size of the nonlinear transformation
in the auxiliary network, i.e., dg , was set to 256 to speed up
the training. The hidden activation of the previous layer was
used to generate the scaling and shifting parameters for the cur-
rent layer. We also used dropout for the auxiliary network to
improve performance. Note that the main network was more
adaptable to smaller learning rates due to the influence of the
auxiliary network. Therefore, the learning rate was set to 0.0001
for the ASN models, and fmax was set to 5000.

Table 3: The CERs (%) of SI, SN and different ASN models

Model Model Size(M) CER(%)

SI 85.82 9.96

SN 85.84 8.89

ASN-S 92.75 8.22
ASN-B1 92.75 8.51
ASN-B2 92.75 8.39

Table 3 summarizes the experimental results of the SI, SN
and ASN models. ASN-S indicates that the scaling and shifting
parameters in SN were generated at the speaker level. ASN-
B1 and ASN-B2 denote the parameters that were generated
by using the weighted mean of all activated frames and all
speaker context vectors, respectively. As shown in Table 3,
all ASN models outperformed the SN models. In batch-level
ASN, since the proposed speaker interclass attention utilized
the discriminative information among different speakers, ASN-
B1 performed better than ASN-B2. In speaker-level ASN, since
specific scaling and shifting parameters were generated for each
speaker to provide more discriminative information, ASN-S fur-
ther outperformed ASN-B. Finally, ASN-S achieved the best
CER of 8.22%, resulting in 17.5% relative improvement over
the SI model.

5. Conclusions
In this work, we propose a novel speaker normalization tech-
nique for neural acoustic model adaptation in CTC-based ASR.
Unlike previous work, we use the idea of BN to normalize hid-
den activations at the speaker level. The method performs a
layer-wise normalization for hidden activations and utilizes the
mean and variance information of each speaker. Experimen-
tal results show that the proposed SN enables the model to be
trained with a higher learning rate, resulting in a better perfor-
mance. Additionally, SN makes model training more resilient
to the batch size, which makes it possible to use it in differ-
ent scenarios. Furthermore, based on SN, we propose ASN, in
which the scaling and shifting parameters are dynamically gen-
erated by using an auxiliary network with an attention mecha-
nism. We generate the parameters at the speaker level and batch
level. The two strategies both outperform the standard SN, fi-
nally achieving up to a 17.5% relative reduction in CER.
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