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Abstract
End-to-end models have been introduced into automatic speech
recognition (ASR) successfully and achieved superior perfor-
mance compared with conventional hybrid systems, especially
with the newly proposed transformer model. However, speaker
mismatch between training and test data remains a problem, and
speaker adaptation for transformer model can be further im-
proved. In this paper, we propose to conduct speaker aware
training for ASR in transformer model. Specifically, we pro-
pose to embed speaker knowledge through a persistent mem-
ory model into speech transformer encoder at utterance level.
The speaker information is represented by a number of static
speaker i-vectors, which is concatenated to speech utterance at
each encoder self-attention layer. Persistent memory is thus
formed by carrying speaker information through the depth of
encoder. The speaker knowledge is captured from self-attention
between speech and persistent memory vector in encoder. Ex-
periment results on LibriSpeech, Switchboard and AISHELL-1
ASR task show that our proposed model brings relative 4.7%-
12.5% word error rate (WER) reductions, and achieves superior
results compared with other models with the same objective.
Furthermore, our model brings relative 2.1%-8.3% WER reduc-
tions compared with the first persistent memory model used in
ASR.
Index Terms: speech transformer, persistent memory, speaker
adaptation

1. Introduction
The past decade has witnessed extensive use of deep learn-
ing in various domains. For ASR, end-to-end models have
brought a new state-of-the-art performance compared with con-
ventional hybrid systems. From connectionist temporal classi-
fication (CTC) models [1, 2], attention-based encoder-decoder
models [3], to recurrent neural network transducer (RNN-T)
[2] and transformer models [4], end-to-end architecture has the
advantage to be a single unified model with fast computation
speed and fast development time.

Although ASR performance has greatly improved, speaker
mismatch between training and test data will degrade ASR
performance. There are several previous studies to address
speaker mismatch problem, which can be categorized into fea-
ture adaptation and model adaptation. Feature adaptation works
on acoustic features, either by normalizing acoustic features
to be speaker-independent [5, 6, 7], or by bringing auxiliary
speaker related knowledge (e.g. i-vector) into acoustic model
[8, 9, 10, 11]. In [12], K. Vesely et al. replaces speaker i-vector
with a summary vector of each utterance, and trains the sum-
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mary vector together with the main model. [13] generates shift-
ing and scaling parameters in layer normalization layer to adapt
to acoustic variability. Model adaptation estimates the speaker-
dependent parameters from speaker-independent model param-
eters with additional adaptation data. One of the methods is
to retrain the whole model. L2 regularization [14], Kullback-
Leibler divergence [15] and adversarial multitask learning [16]
are used to avoid overfitting. To prevent from retraining a large
model, only certain layers or subset of parameters are adapted
[17, 18, 19]. In particular, [20, 21, 22] reparameterize each
hidden unit (in fully-connected or convolutional neural network
layers) with speaker-dependent amplitude function.

Recently, more and more speaker adaptation research has
adopted end-to-end models. [11] learns a speaker representa-
tion for each speech time step, and then appends it along the
feature dimension of encoder final layer output. However, given
a single speech utterance from one speaker, it is unclear on the
necessity to generate separate speaker representation for each
speech time step. Besides, because [11] appends speaker rep-
resentation to encoder output, it doubles the linear transforma-
tion parameter size at each decoder layer. Specific to these two
points, we propose a speaker aware persistent memory model
built on top of the speech transformer model [4] to address the
speaker mismatch problem. Our method belongs to the feature
adaptation category, where we concatenate speaker i-vectors to
speech utterance, and apply this for each encoder layer, thus
forming a persistent memory through the depth of encoder. Dif-
ferent from [11] which learns for each speech time step, our
method learns utterance level speaker knowledge, which we
believe is more reasonable. On top of that, our method does
not generate a specific speaker knowledge vector to append
to encoder output, but integrates speaker knowledge into en-
coder hidden state by attention computation. By this means,
our method resolves the problem of introducing extra model pa-
rameters. Experiment results on LibriSpeech, Switchboard and
AISHELL-1 ASR task show that our proposed model brings
relative 4.7%-12.5% WER reductions.

2. Model architecture
We build on top of the speech transformer model [4] for speaker
aware training. In this section, we will briefly review the speech
transformer model first, and then introduce our proposed model.

2.1. Speech transformer

Speech transformer [4] builds on top of the transformer model
[23] for ASR. Here we summarize a few key components of
speech transformer model. For full details, please refer to
[4]. There are Ne encoder layers and Nd decoder layers in
the model. For a speech input sequence, it first applies two
convolution layers with stride two to reduce hidden represen-
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tation length. A sinusoidal positional encoding is added to en-
code position information. Transformer encoder then computes
hidden state representation of each position in parallel with a
self-attention network. For the three inputs key, query and
value, which are three distinct transformations of an input se-
quence, the multi-head attention network, which concatenates
self-attention network h times as introduced in [23], is:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

(2)
headi = Attention(QWQ

i ,KWK
i , V WV

i ) (3)

where h is the head number, WQ
i ∈ Rdmodel×dq , WK

i ∈
Rdmodel×dk , WV

i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel , dk =
dq = dv = dmodel/h in this paper.

Multi-head attention allows learning input representation
from different subspaces concurrently. Layer normalization and
residual connection are applied before and after multi-head at-
tention network. Afterward, there is a position-wise feedfor-
ward network with rectified linear unit (ReLU) activation:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel , and the biases
b1 ∈ Rdff , b2 ∈ Rdmodel .

Each layer in encoder consists of multi-head attention net-
work and position-wise feedforward network. For speech trans-
former decoder, there is a third sublayer between multi-head at-
tention and position-wise feedforward network. This is a multi-
head cross attention computed over encoder and decoder out-
put, where key and value vectors come from encoder, and query
vector comes from decoder. To prevent self-attention network
from attending to future positions in the decoder, a masking is
applied.

2.2. Speaker aware persistent memory

Persistent memory was proposed by [24] to replace position-
wise feedforward network in Eq. 4 by an all-attention network,
and to capture general knowledge and non-contextual informa-
tion about the task, but the similar concept was first proposed
in the question answering task [25]. Different from them, our
objective is to do speaker adaptation. We propose to perform
speaker aware training by learning speaker specific knowledge
in a similar manner as capturing general knowledge by the per-
sistent memory model. We call it speaker aware persistent
memory model. In particular, we randomly sample N speaker
i-vectors m1, ...,mN ∈ Rdk which form the speaker space.
Persistent memory vectors Mk and Mv are learned transforma-
tion of speaker space:

Mk = Concat([Ukm1, ..., UkmN ]) ∈ RN×dk (5)

Mv = Concat([Uvm1, ..., UvmN ]) ∈ RN×dk (6)

where Uk ∈ Rdk×dk , Uv ∈ Rdk×dk .
Speaker specific knowledge of an utterance is learned

through the attention with the persistent memory vectors. This
is built on the assumption that the linear combinations of
speaker space are enough to cover the speaker information
space, i. e. a weighted sum of persistent memory vectors can
represent any specific speaker knowledge. The persistent mem-
ory vectors Mk and Mv , together with X = [x1, ..., xt] which

Figure 1: Speaker aware persistent memory model. Mk and
Mv from speaker i-vectors are concatenated to key and value
vectors.

are input vectors of self-attention network, form the new key
and value vectors for self-attention computation as Eq. 9:

Km = [k1, ..., kt+N ] = Concat([Wkx1, ...,Wkxt],Mk)
(7)

Vm = [v1, ..., vt+N ] = Concat([Wvx1, ...,Wvxt],Mv) (8)

Attention(Q,Km, Vm) = softmax(
QKT

m√
dk

)Vm (9)

In the original persistent memory model [24], it randomly
initializes N pairs of vectors as Mk and Mv in Eq. 7 and Eq. 8,
and these vectors are learnable. On the contrary, the N speaker
i-vectors we use are fixed. Only the weight matrices associated
with attention mechanism Uk and Uv are learnable. Further-
more, since our speaker aware persistent memory is not meant
to play the same role as position-wise feedforward network,
we leave the feedforward network same as the original trans-
former model. Given that Mk and Mv are shared across all
layers, they form the persistent memory, and that is why we call
it speaker aware persistent memory model. Figure 1 gives the
overall framework of speaker aware persistent memory model.

There are three main advantages of our proposed model.
First, we use randomly sampled N speaker i-vectors as the
speaker space, and obtain any speaker knowledge from them. It
solves the problem of having unknown speakers in the test data.
It further relieves us from computing all speaker i-vectors of the
training data. Second, attention with persistent memory vec-
tors is computed together with the entire utterance. Therefore,
it takes the entire utterance into consideration while capturing
speaker information, which is different from [11] who obtains
time step dependent speaker information. Last, [11] concate-
nates speaker embedding with encoder final layer output, and
downscales the vector to original at decoder side. It doubles the
parameter size of linear transformation in each decoder layer. In
contrast, attention with persistent memory vectors is integrated
into the self-attention network in our model, and there is no ex-
tra parameters of linear transformation in decoder.
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Table 1: Details of datasets used for experiments

LibriSpeech

Training set 100h (251 speakers)
Test clean set 5.4h (20 males, 20 females)
Test other set 5.1h (16 males, 17 females)

Switchboard

Training set 300h (4804 speakers)
SWBD set 2.1h (40 speakers)
CallHome set 1.6h (40 speakers)

AISHELL-1

Training set 150h (340 speakers)
Test set 5h (13 males, 7 females)

Table 2: WER results of end-to-end speech recognition models
on LibriSpeech 100h

Model Test clean Test other

End-to-end (E2E) [29] 14.7 40.8
E2E with augmented data [30] 15.1 -

LAS [31] 12.9 35.5
Baseline 12.0 29.7

3. Experimental setup
3.1. Datasets

We conduct experiments to confirm the effectiveness of the pro-
posed model on three publicly available datasets, including Lib-
riSpeech [26], Switchboard [27] and AISHELL-1 [28]. Lib-
riSpeech consists of 16kHz read English speech from audio-
books. Switchboard is a 300 hour corpus of conversational En-
glish telephone speech. AISHELL-1 is a 16kHz Chinese Man-
darin speech corpus recorded by 400 speakers from different
accent areas in China. The characteristics of the datasets are
summarized in Table 1.

3.2. Training setup

We use PyTorch and Espnet [32] toolkit for our experiments.
Input features are generated by 80-dimensional filterbanks with
pitch on each frame, with a window size of 25ms shifted every
10ms. The acoustic features are mean and variance normal-
ized. We exclude utterances longer than 3000 frames or 400
characters to keep memory manageable. For joint decoding of
CTC and attention, the coefficient is 0.3 and 0.7 for CTC and
attention respectively. The convolutional frontend before trans-
former encoder is two 2D convolutional neural network layers
with filter size (3,2) and stride 2, each followed by a ReLU ac-
tivation. The attention dimension dmodel is 256, and the feed-
forward network hidden state dimension dff is 2048. In the
transformer structure, the number of attention heads h is 4, with
dk = dq = dv = 64 for each head, the number of encoder lay-
ers Ne is 12, the number of decoder layers Nd is 6, the initial
value of learning rate is 5.0, the encoder and decoder dropout
rate is 0.1. The input samples are shuffled randomly and trained
with batch size 12. We use unigram sub-word algorithm with
the vocabulary size capped to be 5000. For i-vector generation,
we follow SRE08 recipe in Kaldi toolkit on the training data.
I-vectors extracted are of dimension 100. They are then trans-
formed to have the same dimension as speech vectors for con-
catenation. Hyperparameters, including the number of speaker
i-vectors in the speaker space and the number of layers applied
with speaker aware persistent memory are tuned using the Lib-

Figure 2: Speaker aware persistent memory results (WER) ap-
plied on all encoder layers for different number of speaker i-
vectors on LibriSpeech test dataset.

Table 3: Speaker aware persistent memory results (WER) with
64 speaker i-vectors applied on different layers on LibriSpeech
test dataset

Encoder layers applied Test clean Test other

Baseline 12.0 29.7
Lower half (1-6) 11.2 28.6

Higher half (7-12) 10.9 28.1
All (1-12) 10.5 28.3

riSpeech dataset. Our baseline model is competitive compared
with other model results from Table 2.

4. Experimental results
4.1. Number of speaker i-vectors in the speaker space

We first investigate the effect of the number of speaker i-vectors
N in the speaker space on the LibriSpeech dataset. Different
numbers of speakers are randomly selected from the training
data, ranging from 16 to 251 (all speakers). Speaker aware per-
sistent memory is applied on all encoder layers. The results
are shown in Figure 2. It can be seen that the performance im-
proves with the number of i-vectors in the speaker space in-
creasing from 16 to 64. This exemplifies the effectiveness of
speaker aware persistent memory, that introducing speaker i-
vector helps capture speaker knowledge. Furthermore, adding
more speaker i-vectors gives more diverse speaker information.
Afterward, increasing the number of i-vectors does not affect
much. We believe this is because 64 i-vectors are good enough
to capture enough speaker variation. Thus, increasing the num-
ber of i-vectors will neither add value further nor deteriorate
the performance. We use 64 speaker i-vectors for subsequent
experiments.

4.2. Number of layers applied with speaker aware persis-
tent memory

Secondly, we look into which hidden layers should the speaker
aware persistent memory be applied to. For these layers, there is
a component of speaker knowledge in the hidden layer vectors.
The results are summarized in Table 3. When we apply speaker
aware persistent memory on all encoder layers (layer 1-12), it
achieves the best result on the clean test set (Test clean), and
overall it brings relative 4.7%-12.5% WER reductions. Apply-
ing it on higher encoder layers (layer 7-12) performs better than
applying it on lower encoder layers (layer 1-6). Compared with
lower layers, encoder output from higher layers has more ab-
stract and global information. In contrast, encoder output from
lower layers comes from raw features and has more phonetic in-
formation. Thus, introducing i-vector will be of less use in the
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Table 4: State-of-the-art results of different algorithms

Model Switchboard (WER)

SWBD CallHome All

Baseline 8.8 18.0 13.4
Attn based [10] - - 15.5
BLHUC [22] 12.8 22.9 -

Persistent Memory [33] 8.8 17.5 13.2
Our work 8.2 16.0 12.1

Model AISHELL-1 (CER)

Dev Test

Baseline 6.4 7.3
SAST [11] 7.6 7.8

Persistent Memory [33] 6.3 7.1
Our work 5.9 6.4

Model LibriSpeech 100h (WER)

Test clean Test other

Baseline 12.0 29.7
SAST [11] 11.4 28.4

Persistent Memory [33] 11.3 28.9
Our work 10.5 28.3

lower encoder layers. We notice that the improvement on the
noisy test set (Test other) is moderate only. This is mainly be-
cause our 100h LibriSpeech training data is all clean data. The
mismatch of training and test data deteriorates the performance.
Similar deterioration on the LibriSpeech noisy test set is also
observed in all other models to be presented in the next section.

4.3. Comparison with other state-of-the-art results

Thirdly, we show that our work outperforms other simi-
lar approaches on Switchboard, AISHELL-1 and LibriSpeech
datasets in Table 4. We use 64 speaker i-vectors and apply to all
layers with speaker aware persistent memory. For Switchboard
dataset, where the training data contains both SWBD and Call-
Home data, our work brings 9.7% relative improvement over the
baseline. Furthermore, here we also compare our model with
the first persistent memory model used in ASR [33]. In [33],
persistent memory vectors are randomly initialized and meant
to capture general knowledge. Different from them, our model
is to address the speaker mismatch issue. It can be seen that our
model outperforms theirs by 8.3%. Similarly for AISHELL-
1 dataset, our model brings 7.8%-12.3% relative improvement
over the baseline. For LibriSpeech 100h dataset, our work has
4.7%-12.5% relative improvement. As mentioned earlier, due to
the fact that LibriSpeech training data is clean data, all model’s
improvement on LibriSpeech noisy data is less significant.

4.4. Analysis of speaker aware persistent memory

Lastly, we would like to verify if our proposed speaker aware
persistent memory really captures speaker knowledge using
LibriSpeech dataset. WER reduction on all datasets could not
prove or disprove from this perspective. Since we use the fixed
speaker space, we plot the learnable attention scores between
an utterance and persistent memory vector Mk, which is the
learned transformation of 64 speaker i-vectors, after softmax
computation from Eq. 9, averaged over all time steps of the ut-
terance. The plot on top of Figure 3 shows attention scores of
ten different utterances from the same speaker. Given the ten

Figure 3: Attention scores between ten utterances and persistent
memory vector Mk. Top: All utterances from same speaker and
Mk is learned transformation of 64 speaker i-vectors. Middle:
All utterances from different speakers and Mk is learned trans-
formation of 64 speaker i-vectors. Bottom: All utterances from
same speaker and Mk contains 64 randomly initialized vectors
[33]. Attention scores shown are after softmax computation and
averaged over all time steps of each utterance.

different utterances with the only common ground of coming
from the same speaker, they show similar pattern of attention
scores, which clearly shows that certain speaker knowledge is
captured. On the other hand, in the middle of the figure, the
attention scores of ten random utterances from ten different
speakers are quite random. The dataset does not provide one
common utterance from different speakers, so we have to select
random utterances. We take average attention scores along the
entire utterance, which will mitigate acoustic variation among
different utterances to some extent. Here we also present the
attention scores of ten utterances from the same speaker in a
transformer model using randomly initialized Mk as in [33]
at the bottom of the figure, which is meant to capture general
knowledge. From the irregular plot, it does not seem to cap-
ture speaker-related knowledge. From here, we conclude that
speaker aware persistent memory captures speaker knowledge.

5. Conclusions
In this paper, we have proposed a speaker aware persistent
memory model to address speaker mismatch between training
and test data in ASR. Our speaker aware persistent memory is
composed of a number of static speaker i-vectors, which form
the speaker space for speaker knowledge extraction. The two
transformations of speaker i-vectors are concatenated to the key
and value vectors of self-attention layer respectively, and are
carried across multiple layers, thus form a persistent memory.
Experiment results show that our model has 4.7%-12.5% rela-
tive improvement over baseline model for LibriSpeech dataset,
7.8%-12.3% relative improvement for AISHELL-1 dataset, and
9.7% for Switchboard dataset. In the future, we will try to ad-
dress above issue without introducing external information such
as i-vector.
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