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Abstract
In our previous work, we introduced a speaker adaptive training
method based on frame-level attention mechanism for speech
recognition, which has been proved an effective way to do
speaker adaptive training. In this paper, we present an improved
method by introducing the attention-over-attention mechanism.
This attention module is used to further measure the contri-
bution of each frame to the speaker embeddings in an utter-
ance, and then generate an utterance-level speaker embedding to
perform speaker adaptive training. Compared with the frame-
level ones, the generated utterance-level speaker embeddings
are more representative and stable. Experiments on both the
Switchboard and AISHELL-2 tasks show that our method can
achieve a relative word error rate reduction of approximately
8.0% compared with the speaker independent model, and over
6.0% compared with the traditional utterance-level d-vector-
based speaker adaptive training method.
Index Terms: speech recognition, speaker adaptive training,
attention-over-attention

1. Introduction
Recently, deep neural networks (DNNs) such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs)
have become the mainstream structure of automatic speech
recognition (ASR) [1–3]. However, when it comes to the speak-
ers with special accents or pronunciation habits, the accuracy of
ASR may suffer a significant reduction. In response, speaker
adaptive training (SAT) is one of the effective approaches to
improve the performance of ASR on these conditions.

The most widely used methods of SAT can be classified
into two categories: auxiliary features and adversarial learn-
ing. Auxiliary features that contain information about speak-
ers are used to perform speaker adaptive training. Speaker i-
vectors or bottleneck vectors, obtained by a pretrained speaker
recognition model, can be used with the acoustic features to-
gether to make the acoustic model generalize better to different
speakers [4–7]. In addition, speaker codes [8–10] can also be
used to represent speaker characteristics. To highlight the im-
portance of the speaker embeddings in adaptation, the authors
in [11, 12] try to generate the speaker-dependent (SD) parame-
ters via a controller network that takes speaker embeddings as
input, and the controller network is shared among all speakers.
Another type of methods to perform SAT is using the adver-
sarial learning scheme. Similar to the methods used in domain
adaptation [13–15], the acoustic model and the speaker classifi-
cation model are jointly optimized via adversarial learning [16].
In [17], a reconstruction network is trained to predict the input
speaker i-vector. The mean-squared error loss of the i-vector
reconstruction and the cross-entropy loss of the acoustic model
are jointly optimized through adversarial multi-task learning.

The speaker adaptive training methods mentioned above
should be helpful when a number of adaptation data is pro-
vided. However, in real-world ASR systems, the collection of
sufficient speaker data is very difficult, particularly the labeled
data. Insufficient data will introduce an inaccurate speaker em-
bedding and make a sharp decline in performance for speaker
adaptive training. As one of the mainstream approaches, the
i-vector-based speaker adaptive training method takes the i-
vectors obtained in advance as the speaker embeddings. How-
ever, their performance is unsatisfactory because the i-vector is
obtained without regard to the speech recognition task.

In order to provide a dynamic speaker embedding associ-
ated with the speech recognition performance, a speaker adap-
tive training method based on attention mechanism is proposed
in our previous work [18]. The i-vectors of all speakers in the
training data are obtained as a static memory in advance. For
each frame, the closest speaker i-vector is selected with atten-
tion mechanism which is learned jointly with the acoustic model
from the training data. However, subject to the limited and par-
tially invalid frames, the speaker representation would be unsta-
ble and uniform to a certain extent.

In this paper, we propose a speaker adaptive training
method for speech recognition based on attention-over-attention
mechanism. For each utterance, the nearest d-vectors are se-
lected and then recombined to an utterance-level aggregated
vector by attention-over-attention mechanism. The aggregated
vector is connected with the acoustic model to provide the in-
formation about the current speaker. Compared with the tradi-
tional utterance-level d-vectors or the frame-level aggregated d-
vectors metioned in [18], aggregated utterance-level vectors can
provide a more accurate and robust speaker representation to
improve the recognition accuracy. Experiments on the Switch-
board and AISHELL-2 tasks show that the proposed method
achieves a significant improvement over the SD method based
on utterance-level d-vectors.

2. Related Work
Since the speaker representation is essential to the speaker adap-
tive training, there have been intensive researches to optimize
the speaker embeddings and create the direct relationship be-
tween the speaker embeddings and the speech recognition per-
formance with limited resources. As mentioned above, an atten-
tion based speaker adaptive training method is proposed in [18].
As illustrated in Fig. 1, the framework mainly consists of two
parts: the main network and the attention module.

The main network of the proposed method is the same as
other structures of acoustic model, including feedforward neu-
ral networks, CNNs and RNNs. The main network plays two
roles: acoustic modeling and providing information for the at-
tention module. As a kind of weak information, speak char-
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Figure 1: The framework of the speaker adaptive training
method based on attention mechanism.

acteristics need to be extracted and used before it is removed
finally by deep neural networks. Therefore, the outputs of the
hidden layers near the input layer are provided for the attention
module.

The attention module is equipped mainly to select the vec-
tors that are most similar to the current frame from the memory
and combine them into a vector named the frame-level aggre-
gated speaker vector. The memory consists of a group of vec-
tors, such as i-vectors [19] and d-vectors [20], which are eas-
ily distinguished from each other by its corresponding speaker.
As an effective representation of the speaker, the aggregated
speaker vector based on attention mechanism is used together
with the acoustic features to do speaker adaptive training.

Experiments on the Switchboard task show that the speaker
adaptive training method based on attention mechanism could
achieve a decent performance improvement compared to that of
the i-vector-based speaker adaptive training method.

3. The Proposed Method
3.1. Motivation

In our previous work [18], the frame-level aggregated speaker
vectors based on attention mechanism is used to represent the
frame-level speaker embeddings. However, because only the
history part of current utterance can be used to gather the
speaker information during the process of attention module at
each frame, especially for the first few frames, the speaker rep-
resentation would be unstable and uniform. In addition, dur-
ing the process of gathering the speaker information, an aver-
age pooling is used to obtain the information. Average pooling
means all the history frames have the same importance. When
there are some abnormal frames with little speaker information,
such as silence or environmental noise frame, average pooling
strategy is obviously unreasonable to generate the representa-
tive speaker embeddings. That is to say, effective speaker infor-
mation may be further weaken by the partially invalid frames.
In order to make better use of the long-term speaker informa-
tion and then form a representative utterance-level speaker em-
bedding, the attention mechanism should focus not only on the
importance distribution of each vector in the memory at each
frame, but also the importance distribution of each frame. In
order to maintain the coherence and consistency of the speaker
embeddings within an utterance, we tend to make use of the
utterance-level embeddings with attention mechanism.

Attention mechanism is widely used in many fields, such
as machine translation and speech recognition. By putting dif-
ferent weights on different types of information, the process
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Figure 2: The framework of the speaker adaptive training
method based on attention-over-attention mechanism.

of model training becomes more flexible. Common attention
mechanisms include: soft attention [21], hard attention [22] and
self-attention [23]. In paper [24], another attention mechanism
is placed over the existing attention to further strengthen the im-
portance of each individual attention part. This kind of attention
mechanism covering two dimensional space, called attention-
over-attention mechanisms, offers a potential path to generate
robust utterance-level embeddings. Further attention in time di-
mension can weaken the influence of some abnormal frame-
level speaker embedding. Therefore, the embedding generated
from all the frames of this utterance can be uniform and stable.

Starting with the generation of representative and robust
utterance-level speaker embeddings, we propose a speaker
adaptive training method for speech recognition based on
attention-over-attention mechanism

3.2. SAT Based on Attention-over-Attention Mechanism

As illustrated in Fig. 2, the main structure of the speaker adap-
tive training method based on attention-over-attention mecha-
nism is similar with our previous work. We replace the common
attention mechanism by attention-over-attention mechanism to
generate a more representative and stable speaker embedding.

In our study, the d-vectors of the speakers in training set
are extracted as the memory. To obtain the d-vectors, a neural
network is pre-trained by speaker discriminative criteria such as
cross-entropy or triplet loss. Then, the output of the last hidden
layer is obtained to produce a frame-level speaker representa-
tion, and all the frame-level representations are then averaged to
form an utterance-level speaker embedding called the d-vector.
Finally, the simplified method of clustering such as K-means is
adopted to reduce the number of base vectors in a memory. As-
suming that the memory has N vectors, the memory is denoted
by m = {m1,m2,...,mN}, in which mi represents the i-th vector
in this memory.

Given an utterance with T speech frames, the acoustic fea-
tures of the main network are represented by X = {x1,x2,...,xT },
where xt represents the feature vector at the frame t. The cor-
responding outputs of the l-th hidden layer of the main network
are denoted as Hl = {hl

1,hl
2,...,hl

T }.
After obtaining the output of the hidden layer near the input

layer hlow and the memory m, we calculate a similarity degree
matrix, which indicates the similarity scores between speaker
information for each frame and each vector in the memory. We
compute the matrix M ∈ R|T |×|N| by the dot product between
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the transformation output vector of hlow at the frame t and the
i-th memory vector.

M(t, i) = (Wmhlow
t )�m>i (1)

Based on the similarity degree matrix M, we apply a row-
wise softmax function to get the similarity scores for each row.
We denote α(t) ∈ R|N| as the memory-level attention at the
frame t. α(t) indicates the similarity degree to each vector at
this frame, as described in the following formula.

α(t) = softmax(M(t, 1), ...,M(t, |N |))
α = [α(1), α(2), ..., α(|T |)]

(2)

The contributions to the speaker embeddings of each frame
are obvious different, particularly those featured as environmen-
tal noise, and so on. On the contrary, the utterance-level speaker
embeddings are more robust than the frame-level ones. Instead
of averaging α at all the frames to form a final attention score,
another attention mechanism is introduced to determine the im-
portance of each individual attention.

We first calculate a column-wise softmax attention to get
the similarity scores for each column, and denote β(i) ∈ R|T |
as the frame-level attention at the memory i. β(i) indicates
the importance degree of each frame corresponding to the i-th
vector in the memory, as described in the following formula.

β(i) = softmax(M(1, i), ...,M(|T | , i)) (3)

Then, we average all the β(i) to get an averaged attention
β. β is also an attention score vector with T dimensions, and it
can be taken as the final importance degree of each frame.

β =
1

N

N∑
i=1

β(i) (4)

Since α is a combination of memory-level attention from
1 to T and β is a frame-level attention, we can calculate the
matrix multiplication between α and β to get the final attention
score a in an utterance. Attention score a is a N -dimensional
vector.

a = α� β> (5)

The normalized attention values a are used to compute a
weighted sum of the vectors in the memory and formula the
final utterance-level aggregated speaker vector c.

c =

N∑
i=1

αimi (6)

Finally, we connect the aggregated speaker vector with
the main network, and the main network generates speaker-
normalized representations using the speaker information in
the aggregated speaker vector. For each frame, the aggre-
gated speaker vector ct is the same as c. A simple connec-
tion method is concatenating the aggregated speaker vector
with the outputs of the hidden layers of the main network as
ĥ

low
t = [hlow>

t , ct>]>.
The final loss function at the cross-entropy training stage of

the proposed method is described by the following formula:

L =

S∑
s=1

Ts∑
t=1

log p(yst |xs
t ,m) (7)

In Eq.(7), xs
t and yst indicate the acoustic feature vector and

the triphone state label for frame t in utterance s. Ts is the
number of frames of utterance s, and S is the number of total
utterances in the training set.

4. Experiments and result analysis
4.1. Experimental Setup

We evaluated the performance of the proposed approach on both
English and Mandarin speech recognition tasks.

The English training data of the Switchboard (SWB) task
[25] consists of 20-hour English CALLHOME and 309-hour
Switchboard-I dataset, including a total of 5110 speakers. The
SWB part of NIST 2000 Hub5 evaluation set is taken as test
set, and it contains 1831 utterances from 40 speakers in to-
tal. The Mandarin training data of AISHELL-2 task [26] con-
sists of 1000 hours of clean audio segments recorded via the
iPhone channel from 1991 speakers, including 1293 speakers
with slight northern accents, 678 speakers with southern ac-
cents and 20 speakers with other accents. The test set contains
5000 utterances from 10 speakers, and each speaker has approx-
imately half an hour of audio segments.

4.2. Baseline systems

The SI baseline was trained with a VGG-like [27] model archi-
tecture based on frame-level cross-entropy criterion. The inputs
of the model were the 40-dimensional log Mel-scale filter-bank
features. The architecture of the model mainly consisted of con-
volutional and pooling layers, and each convolutional layer was
equipped with a standard ReLU activation function. We shuf-
fled the utterances in training data and grouped them into mini-
batches with a limit of 2048 frames per minibatch to speed up
training. Stochastic gradient descent was used as the optimizer,
and the initial learning rate was set to 0.02. All subsequent ex-
periments were performed by the CAFFE toolkit [28] and run
on a server equipped with 4 Tesla P40 GPUs.

In our paper, speaker d-vectors are taken as additional in-
puts to perform speaker adaptive training. The speaker verifica-
tion network included five convolutional layers. The utterances
belonging to the same speaker were concatenated and split into
audio segments, each of which had 500 frames. 64-dimensional
log Mel-scale filter-bank features were taken as the input.

The d-vector-based SD models were evaluated at both the
speaker and utterance levels. During the testing steps, the
utterance-level d-vectors were extracted from each utterance
separately and the speaker-level d-vectors were extracted using
all the utterances from the same speaker. Table 1 reports the
word error rate (WER) of the baseline models on SWB task.
The performance at the utterance level is much worse than that
at the speaker level.

Table 1: Performance of the baseline models on the SWB task.

Method WER WERR

SI baseline 13.8 –
SD baseline(speaker-level) 13.0 5.8%
SD baseline(utterance-level) 13.5 2.2%

4.3. Results of the proposed method

For speaker adaptive training method based on the d-vector
memory, all speaker-level vectors in the training set were clus-
tered into 128 classes via the K-means algorithm.

Table 2 reports the performance of the proposed method on
the SWB task. For our previous work, speaker adaptive training
method based on the traditional frame-level attention mecha-
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nism achieves a relative 4.3% WER reduction (WERR) com-
pared with the SI model and a relative 2.3% WER reduction
over the utterance-level d-vector-based SD model. When we
substitute the traditional frame-level attention mechanism with
the utterance-level attention-over-attention (AOA) mechanism,
the proposed method achieves a relative 8.0% WER reduction
over the SI baseline model and a relative 5.9% WER reduc-
tion over the utterance-level d-vector-based SD model. In ad-
dition, the result of SAT based on AOA mechanism also has
lower WER than the speaker-level d-vector-based SD model. If
we just average the memory-level attention at all the frames to
form the final utterance-level attention directly, no significant
improvement can be achieved. For a deep convolution neural
network, computational complexity hardly changes at all. Com-
pared with the traditional frame-level attention or utterance-
level average attention mechanism, attention-over-attention fur-
ther strengthen the discrimination among each frame-level
speaker embeddings based on the utterance-level long informa-
tion. In light of this, the generation of the aggregated speaker
vector is more robust.

Table 2: Performance of the proposed method on the SWB task.

Method WER WERR

SI baseline 13.8 –
SAT with traditional frame-level Att. [18] 13.2 4.3%
SAT with utterance-level average Att. 13.1 5.1%
SAT with utterance-level AOA 12.7 8.0%

We also presented the results on AISHELL-2 task. The re-
sults shown in Table 3 are consistent with the results on SWB
task. The proposed method achieves a relative 8.3% WER re-
duction over the SI model and a relative 7.0% WER reduction
over the utterance-level d-vector-based SD model.

Table 3: Performance of the proposed method on the AISHELL-
2 task.

Method WER WERR

SI baseline 7.2 –
SD baseline(speaker-level) 6.9 4.2%
SD baseline(utterance-level) 7.1 1.4%
SAT with traditional frame-level Att. [18] 6.9 4.2%
SAT with utterance-level AOA 6.6 8.3%

To verify the improvement of the speaker embeddings, we
compared the aggregated speaker d-vectors with the utterance-
level d-vectors with t-distributed stochastic neighbor embed-
ding (t-SNE) [29] on test data. 10 utterances from the same
speaker were first randomly picked, and then the utterance-level
d-vectors based on attention-over-attention were obtained di-
rectly during the attention module. And the utterance-level d-
vectors based on the traditional frame-level attention could be
generated by averaging all the frame-level aggregated speaker
vectors in an utterance. For comparison, traditional utterance-
level d-vectors were also extracted for each utterance of each
speaker.

As shown in Fig. 3, the aggregated speaker vectors based on
different attention mechanism are all closer to the speaker-level
d-vector than the traditional utterance-level ones. And com-
pared with the traditional frame-level attention mechanism, the
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Figure 3: t-SNE of the different speaker vectors in test set.

aggregated speaker vectors based on attention-over-attention
are more concentrated, which indicates the offsets influenced
by the frame with little speaker information are effectively re-
duced. In order to solidify the conclusion, we calculated the
euclidean distance between the utterance-level speaker vector
and speaker-level d-vector for all the utterances of all the speak-
ers in the test set, and got the mean and variance of the dis-
tance. As shown in Table 4, compared with the aggregated
utterance-level d-vectors based on the traditional frame-level
attention mechanism, the mean of euclidean distance of the
aggregated utterance-level d-vectors based on attention-over-
attention mechanism is relatively closer while the variance of
the euclidean distance has great advantages. The results prove
the superiority of the attention-over-attention mechanism again.

Table 4: The mean and variance of euclidean distance between
different utterance-level d-vectors and speaker-level d-vectors.

Utterance-level d-vectors Mean Variance

traditional d-vectors 1.43 0.13
aggregated d-vectors based on Att. 1.29 0.10
aggregated d-vectors based on AOA 1.24 0.06

5. Conclusions

In this study, we have proposed a speaker adaptive training
method for speech recognition with attention-over-attention
mechanism, which can be used to measure the speaker infor-
mation contribution of each memory vector and each frame.
Thus, the utterance-level aggregated vectors are more represen-
tative and stable. The results on Switchboard and AISHELL-
2 task show that our proposed approach can achieve relative
word error rate reductions of 8.0% and 8.3% compared with the
speaker independent model respectively, and 6.0%-7.0% com-
pared to that of the traditional utterance-level d-vector-based
SAT method. The utterance-level aggregated speaker vectors
based on attention-over-attention mechanism yielded relative
word error rate reductions of approximately 4.0% compared
with the frame-level attention mechanism.
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