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Abstract

We emulate continual learning observed in real life, where
new training data, which represent new application domain, are
used for gradual improvement of an Automatic Speech Recog-
nizer(ASR) trained on old domains. The data on which the orig-
inal classifier was trained is no longer required and we observe
no loss of performance on the original domain. Further, on pre-
viously unseen domain, our technique appears to yield slight
advantage over offline multi-condition training. The proposed
learning technique is consistent with our previously studied ad
hoc stream attention based multi-stream ASR.

Index Terms: Continual Learning, Lifelong Learning, Auto-
matic Speech Recognition, Multi-stream ASR

1. Introduction

Most ASR systems use a neural network classifier trained on
labeled acoustic data that estimates posterior probability of
speech sounds from incoming acoustic signal. Typical learn-
ing requires training data from all application domains, which
are expected to be encountered during the ASR deployment.
When new application domains are encountered after deploy-
ment, ASRs typically generalize poorly. An instance of this can
be seen in table 1. Both Wall Street Journal (WSJ) and Lib-
rispeech (sec. 5) consist of clean read speech data, however an
ASR trained with one data does not generalize well to the other
domain.

Table 1: WER % on out-of-domain data sets. Both the acous-
tic and language models are trained on each individual data
domain.

Trained On ‘ Tested On

WSJ Librispeech
WSJ 13.2 432
Librispeech | 28.5 21.0

An offline approach to overcome this problem is to accumu-
late the training data from new domains together with the orig-
inal training data, and re-train the whole classifier using multi-
task[1, 2], multi-condition[3, 4] or data-augmentation[5, 6]
techniques. However, this is resource intensive and inconsis-
tent with the natural online learning process observed in humans
which leads to a gradual improvement in performance over old
as well as future unknown data domains. Additionally, for data
privacy as well as practical space constraints, it may not be pos-
sible to save all old training data for future re-training stages. In
such a case, training data from the new domain could be used for
adaptation of a part of the existing classifier, however, leading
to some loss in performance on the old domains - a phenomenon
known as catastrophic forgetting[7, 8, 9].
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2. Continual Learning

Recent works on Continual Learning (CL) [10, 11, 12] aim at
emulating the gradual learning observed in humans using ma-
chines by utilizing a continuous stream of data over a period of
time to learn and share knowledge over different data domains.
Training on new application domain should enhance the perfor-
mance on all past domains (backward transfer) and on all future
domains to come (forward transfer). To overcome catastrophic
forgetting, some of the proposed CL models use network expan-
sion techniques to add more parameters for new training data
[13, 14, 15], while others use various regularization methods
[16, 17] or memory replay techniques [18, 19] to prevent old
knowledge from getting overwritten by new training data. In
this paper, we propose a dynamically expanding model for con-
tinual learning.

3. Continual Learning in HMM-DNN ASR

In a HMM-DNN ASR[20], a Deep Neural Network (DNN)
computes frame level likelihoods for an utterance of feature
vectors X = (z1,®2,...Tnm), wWhich are subsequently used
by a Hidden Markov Model (HMM) to compute the likelihood
of the utterance X . If W be all possible sequences of words, an
ASR computes the best path sequence W* as

W* = argmax p(X|W)P(W) (1)
W

where p(X|W) is obtained from the acoustic model consisting
of the HMM-DNN combination and P (W) is obtained from a
n-gram language model. We use the notation p(x) to denote
likelihoods and P(x) for probability. For data D, the DNN
is trained to classify HMM-states c for every feature vector x.
The posterior probabilities p(c|z, D) are then divided by the
prior probability of states p(c|D) to obtain pseudo likelihoods
p(z|c, D) to be processed by the HMM.

The likelihood generated by the DNN is dependent on its
training data D. Apart from x and ¢, we define the random
variable D € {1,2,... N} where N is a parameter denoting
the number of training data domains. For brevity of notation,
we denote the assignment D = k as Dj,. We would like to have
a continual update of the likelihood estimation model p(x|c, N)
for N € {1,2,3,...00} without repeated retraining for every
N.

The main idea is to factorize the likelihood model
p(z|e, N) into sub-models specific for each data domain D.
We write p(z|c, N) as the marginal over the joint distribution
between x and D as

plake ) = 3 ploDufe) = 3B g
k=1 ®

=1
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The numerator term in eq. 2 can be broken down by chain rule
as
p(z, Dy, c) = 3

P(c| Dy, z)p(x|Dy) P(Dk)

P(c) can also be expressed as a marginal of the join distribution
P(c, D) as shown in eq. 4

¢) = ZP(C, D;)

where p(c, D;) can be broken down by chain rule to obtain

“

P(c, Dj) = P(c|D;)P(D;) ®)
Substituting eq. 3,4,5 into eq. 2, we get
N
P(c|Dg, Dy)P(Dy,
pzle, Ny =3 (el Di, 2)p(x| D) PDy) ©
k=1 Ej:l P(c|D;)P(Dy)

with the constraint 31| P(Dy) = 1

This decomposition enables individual training of respec-
tive models on each domain. Only the acoustic state mod-
els p(c|Dgk,z), the probability of the data P(x|Dy), the
prior probability of classes P(c|Dx) need to be retained
for the subsequent likelihood computation. The training
data for the particular domain are not required anymore.We
propose the following continual model update algorithm.

Algorithm 1: Updating model p(z|c, N)

for N=1 — oo do
Train model P(c|Dn,x); save model;
Train model p(x|Dn); save model;
Save P(c|Dn);
Update likelihood model to

— N P(c|Dy,z)p(z|Dy) P(Dg) .
p({L’|C, N) - Zk:l E]N;CI P(C\D]v)];?(Dj)k ’

end

In the following subsections, we describe how to model
each termineq. 6.

3.1. Computing P(c|Dy, x)

We generate HMM state labels by forced aligning data D =
k with an HMM-GMM ASR model[21]. This labelled data is
then used to discriminatively train a neural network classifier to
generate the posterior probability over the HMM states ¢ given
the input data x.

3.2. Computing P(c|Dy,)

The prior probability of the HMM states for data D = k is
obtained by counting each state label from the forced alignment
followed by normalization to obtain probability values in the
range [0, 1]

3.3. Computing p(z|Dy)

The likelihood of x conditioned on training data D = k is ap-
proximated by the variational lower bound from a Variational
Autoencoder(VAE) [22]. The VAE is a generative neural net-
work model with an inference network to map the data x to a
distribution over the latent variable z with the assumption of
the latent prior to be a centered multivariate isotropic Gaussian.
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Subsequently a generation network maps the latent variable z
back to the feature vector x. A variational lower bound to the
data likelihood p(z|Dy) is maximized for training the neural
network.

3.4. Computing P(Dy,)

The priors reflect our understanding of the the relative occur-

rence of different data domains. As default, we start with as-

signing equal probabilities to all domains of the training data
p(Dk) N}

1
=y vke{l2... (7

3.5. Relation to multi-stream ASR

Multi-stream systems[23, 24, 25] combine the outputs of dif-
ferent neural models using a stream attention module which
determines the relative confidence of each stream. We show
that p(z|c, V) can be a interpreted as a multi-stream likelihood
combination model where the performance of each stream Dy,
is evaluated independently and used as a weight in the linear
fusion of likelihoods from the streams. p(z, Dy, c) can be de-
composed using chain rule as

p(z, Dg, ¢) = p(z|Dy, ¢)P(c|Di)P(Dy) (8)
Substituting eq. 8 into eq. 2, we get
c|D
plzle, N) Zp x| Dy, ¢) Pl k)P(Dk) ©9)

P(e)

p(x|c, N) combines the likelihoods p(x|D,c) using the
fixed attention weights p(D). This interpretation gives us the
flexibility to replace p(D) with a stream attention module like
in a typical multi-stream scenario.

We would like to attend to the stream(s) or domain(s) that
are the likely source(s) for the test utterance X. The average
likelihood p(X|Dy) over the utterance X obtained from the
VAE determines how likely X is to have been obtained from do-
main D;. We normalize these likelihood values from N VAEs
by passing them through a softmax function as in eq. 10

exp(p(X|Dy))
S exp(p(X|Dy))

Accordingly, the likelihood estimation eq. 6 can be modified to

P(Dy) = (10)

p(z|Di) P P(Dy)
(C\D) P(Dy)

N
P(c|D
p(z|e, N) Z C‘ k’

=1

an

, where P(Dy,) is updated for every utterance X. The frame
wise likelihoods generated by p(z|c, N') can eventually be pro-
cessed by the HMM and the best hypothesis word sequence W*
obtained as in eq. 1.

4. Performance Measures
4.1. ASR performance

ASR performance is determined by Word Error Rate (WER) -
the percentage minimum edit distance between the true tran-
scription of a test utterance and the best hypothesis from the
ASR system.



4.2. CL performance

With N different training data obtained over a period of time,
consider W; ; to be the WER of the proposed system on domain
J after our CL system has been trained up to domain <. The CL
performance measures are defined as follows
¢ Average Error:
A % Zivzl Wi,
* Forward Transfer:
]‘—[’L] =R, — Wi—l,i Vi e {2, .. N}
* Backward Transfer:
. i—1 .
B[Z] = iil Zj:l(WjJ — Wi,j) Vi € {27 . N}
Here, Fi] determines the transfer of knowledge to domain ¢ by
all the domains observed before ¢ and R; denotes the WER on
data ¢ for a system without any training. Practically all ASR
systems have a large vocabulary and thus R; is assumed to be
= 100. B[] is the transfer of knowledge by domain 7 to all the
domains before it. Both F[¢] and B[¢] are measured as reduction
in WER.

5. Data sets

We test our system with a sequence of N
speech data sets. The details are shown in table 2.

4 transcribed

Table 2: Data sets for CL evaluation

Data set Training Test

WSJ train_si284 (~80 hrs)

(Data 1) clean read speech test-eval92(T})
Reverb tr_simu_8ch(~120 hrs) et_simu_Ich(Ts)
(Data 2) simluated reverberation et_real_1ch(M2)
Librispeech  train_clean_360(~360 hrs)  test_clean(13)

(Data 3) clean read speech test_other(Ms)
Chime4 et05 _multi_noisy(~110 hrs) . .

(Data 4) simulated+ real noisy et03-simu-noisy(Ts)

It is to be noted that the Chime4 data is the combined data
from all channels. The test sets are divided into two groups, the
matched test set for each data domain 71,75, T3, 7T, and addi-
tional test sets M, M3 which have some inherent mismatches
to all the data in table 2. The test_other(M2) set in Librispeech
consists of high WER speakers [26], while the Reverb test set
et_real_Ich(M3) consists of real reverberated speech.

6. System Details

We use 13 dimensional MFCC features with 4 frames of splic-
ing on either side with utterance wise mean and variance nor-
malization. We use a universal set of 38 phonemes, 3-state
HMMs are defined for every context dependant phoneme and
the number of context dependant HMM states are fixed at 3376
by state-tying. The HMM state alignments on the training data
are obtained using forced alignment with HMM-GMM models
trained with Kaldi [27] for each individual task. The language
model is a tri-gram language model trained with Data 1 tran-
scriptions (the language model is not continually learnt). The
decoding graph for the CL system is obtained by composing
H, C, L and G fsts for Data 1 generated with Kaldi. Our sys-
tem also excludes all pre-processing steps (beamforming, de-
noising, de-reverberation etc.) as well as any speaker specific
normalization, lattice re-scoring etc.
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The neural network classifiers generating the HMM state
posterior distributions are 4 layer Gated Recurrent Unit (GRU)
models with 300 hidden units trained with PyTorch [28] using
cross-entropy loss and the Adam optimization technique [29].
We use an initial learning rate of 0.001 and a learning rate re-
duction by 50% when the validation error is seen to be non-
decreasing.

The VAE models have single encoder and decoder GRU
layers with a hidden dimension of 300 and latent dimension of
100. They are trained with the same optimization strategy using
PyTorch.

Stand-alone system (SS): Apart from the CL systems, we also
train individual single condition HMM-DNN ASR systems on
each individual data sets enlisted in table 2.

Multi-condition system (MS): MS is the offline HMM-DNN
ASR model which is trained by pooling together all the training
data enlisted in table 2. To compensate for the increased amount
of training data, we add an extra GRU layer with 300 nodes for
the MS neural network.

‘We do a comparative analysis of the continual learning sys-
tem with the multi-condition and stand-alone systems in section
7.

7. Results

We evaluate the performance of the continually updated likeli-
hood estimation models p(z|c, N) for N € {1, 2, 3,4} by com-
puting the WER% on the different test sets in table 2 for every
N. A comparison of the WER% results with equal prior and
stream attention models can be seen in table 3. We observe that
the stream attention strategy always outperforms equal prior in
terms of average error A by virtue of its ability to attend to the
most likely data domain. For the rest of this section, we will
only be looking at the results with the stream attention based
likelihood estimation model.

7.1. Knowledge transfer

A more detailed analysis of continual learning can be done by
evaluating the forward and backward knowledge transfer mea-
sures defined in sec 4.2 (shown in table 4).

Table 4: Knowledge transfer w.r.t. WER reduction

F2] F[3] Fl4 Avg
forward transfer 234 579 313 375

B[2]  B[3] B[4 Avg
backward transfer  -0.1 1.8 12 10

The last data domain (Chime4), shows the clear effect
of forward transfer. The model shows a WER reduction of
F[4] = 31.3 below random on test set T before the model
has been updated with any noisy speech. Similar effects can
be seen for the clean data domain Librispeech, which shows
a positive WER reduction of F[3] = 57.9 on test set T3 be-
low random. The backward transfer results in table 4 show that
the system does not suffer from catastrophic forgetting i.e., per-
formance on old data domains do not suffer because of new
model updates. In fact, there is a positive backward transfer
of knowledge to old data domains with an absolute improve-
ment of B[4] = 1.2 WER on test sets 71, 7> and T3 after the
system has been updated with all 4 data sets. A clear indica-
tion of knowledge retention can also be seen from the learning
curve (WER% as a function of N) for the WSJ test set 77. In



Table 3: Comparison of continual learning results with uniform prior P(D) and stream attention ﬁ(D) in WER %

Test Sets
test_eval92(T1) et_simu_Ich(Tz) test_clean(Ts3) et05_simu_noisy(T4) A

Equal Stream | Equal Stream | Equal Stream | Equal Stream Equal  Stream
N | Prior AtEention Prior Atgention Prior AtEention Prior Atgention Prior AtEention

pPD) PMD) | PWD) PMDO) | PD) PD) | PD) P(D) P(D)  P(D)
1 13.2 76.6 43.2 79.6 53.2
2 14.1 13.3 31.9 30.4 432 42.1 76.3 76.4 414 40.6
3 11.6 11.8 314 28.1 31.3 30.2 68.6 68.7 35.7 34.7
4 11.7 11.3 32.5 28.5 32.2 30.4 49.7 46.0 31.5 29.0

spite of 3 model updates after WSJ data, the WER% on T im-
proves from 13.2 to 11.3, a 14% WER reduction. This property
is an outcome of the dynamic network expansion of the pro-
posed system. Knowledge learnt for one data set is preserved in
network weights that remain unchanged for future domains.

7.2. Comparison of continuous learning with stand-alone
and multi-condition systems

In table 5, we compare the ASR performance using the like-
lihood model p(x|c, N = 4) with the individual stand-alone
ASR models and a multi-condition ASR model trained with all
4 data sets. It is to be noted that the stand-alone systems are
trained and tested on one particular domain and are blind to the
existence of other domains.

The multi-condition performance is considered to be the
lower bound to the CL system error [10]. This is because the
multi-condition model is trained with all the data simultane-
ously and hence can share knowledge efficiently across tasks.
This effect can be seen in the WER% improvement of this sys-
tem over the stand-alone systems in table 5.

Continuous learning systems typically perform worse in
comparison to the offline multi-condition model on image tasks
[10]. However, for ASR tasks, we observed that the proposed
system shows slight advantage with a 3% better WER for clean
tasks 71 and T3 compared to the multi-condition system. Thus,
multi-stream systems hold the potential to generalize better than
multi-condition learning, a phenomenon that has been previ-
ously studied in similar ensemble systems in [30, 31]. On the
other hand, in comparison to stand-alone models, the CL sys-
tem effectively shares knowledge between tasks resulting in, on
average, a 8% WER reduction.

Table 5: Comparison of WER% of different models for N = 4

v T T3 Ty M> Mz Avg
stand-alone 132 336 298 479 624 532 40.0
multi-condition 12.6 26.1 30.4 42.5 543 535 36.5
continuous 11.3 285 304 46.0 52.7 529 369

Additionally, for mismatched tasks M2, M3, the CL system
shows better generalization capability in comparison to multi-
condition learning with a 2% reduction in WER (see table 5).
Hence, a continual learning approach gives some advantage for
speaker mismatches (M2) as well as domain mismatched set-
tings (M3) over multi-condition learning.

On average, multi-condition learning and the continual
learning system show very similar performance.
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7.3. Ablation Study

We look at the relative contribution of the numerator terms
p(z|D) and P(D) in eq. 11 to the final performance of the CL
system in table 6, where we eliminate the influence of a term by
setting it to an uniform value of %

Table 6: Ablation study of CL model with N = 4 (results in
WER %)

Tn Ty T3 Ty

p(z|Dx) = +,P(D) =+~ 117 326 323 49.8
P(D) =+ 117 325 322 497
p(x|Dy) = & 11.4 284 304 459

It can be seen from table 6 that with p(x|Dy) + the
likelihood model performance is equivalent to that of the full
CL model (“continuous” in table 5). Hence, the stream attention
module p(D) is the most dominant term in eq. 11 for likelihood
computation.

8. Conclusions

In this paper, we moved beyond database specific ASR systems
to a more natural continual learning paradigm for ASR. Our
system generalizes well across both old and new data domains
eliminating catastrophic forgetting which arises from typical
adaptation techniques. Our continuous learning approach also
achieves very similar performance to multi-condition training
which requires repeated computations and storing all data sets
indefinitely.

In contrast to regularization based CL systems or multi-
condition training, the main disadvantage of our model is the
linear increase in the number of model parameters with the
number of available data domain - leading to an increase in
overall inference time.
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