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Abstract
Detecting singing-voice in polyphonic instrumental music is
critical to music information retrieval. To train a robust vo-
cal detector, a large dataset marked with vocal or non-vocal
label at frame-level is essential. However, frame-level label-
ing is time-consuming and labor expensive, resulting there is
little well-labeled dataset available for singing-voice detection
(S-VD). Hence, we propose a data augmentation method for S-
VD by transfer learning. In this study, clean speech clips with
voice activity endpoints and separate instrumental music clips
are artificially added together to simulate polyphonic vocals to
train a vocal /non-vocal detector. Due to the different articula-
tion and phonation between speaking and singing, the vocal de-
tector trained with the artificial dataset does not match well with
the polyphonic music which is singing vocals together with the
instrumental accompaniments. To reduce this mismatch, trans-
fer learning is used to transfer the knowledge learned from the
artificial speech-plus-music training set to a small but matched
polyphonic dataset, i.e., singing vocals with accompaniments.
By transferring the related knowledge to make up for the lack
of well-labeled training data in S-VD, the proposed data aug-
mentation method by transfer learning can improve S-VD per-
formance with an F-score improvement from 89.5% to 93.2%.
Index Terms: Singing-voice detection, music information re-
trieval, transfer learning, data augmentation

1. Introduction
Singing-voice detection (S-VD) is to detect vocal frames of
given music clips. Successful detection of singing voice re-
gions in polyphonic music is critical to music information re-
trieval (MIR) [1] tasks, such as music summarization [2], re-
trieval [3], transcription [4], genre classification [5], and vocal
separation [6].

Recently, deep learning has been applied to S-VD. Deep
neural networks [7] are used to estimate an ideal binary spec-
trogram mask that represents the spectrogram bins in which the
vocal is more prominent than the accompaniments. Convolu-
tional neural networks (CNN) have been used to boost the per-
formance in MIR [8], with an efficient model built on temporal
and timbre features. Recurrent neural networks (RNN) are em-
ployed to predict time-frequency masks of multiple source sig-
nals, then masks are multiplied with the original signal to obtain
the desired isolated source [9]. Above models can be refined
with more accurate frame-level labels, also known as strong la-
bels [10]. However, labeling strong label is time-consuming,
hence usually datasets have been used with only small number
of songs with strong labels in training.

⇤Work performed as an intern at Microsoft Research Asia.

To overcome the limitation of lack of frame-level labeled
training data in S-VD, we propose a data augmentation [11,12]
method for S-VD by transfer learning. Transfer learning [13]
extracts representations learned from a source task and applies
to a similar but different target task. Transfer learning can al-
leviate the problem of insufficient training data for the target
task and tend to generalize the model. Many transfer learn-
ing methods [14–16] related to S-VD use strong labels, and
some methods even need clean singing recordings. Datasets
with strong labels or clean singing recordings are scarce. How-
ever, clean speech corpora and instrumental music datasets are
widely available in the Internet, and the endpoints of clean
speech can be easily detected. Hence, these clean speech
clips and instrumental music clips can be artificially added to-
gether to simulate polyphonic vocals for training a vocal de-
tector. To make up for the lack of well-labeled training data
in S-VD, this paper proposes to transfer the latent representa-
tions of vocal detector in speech-plus-music domain to detect
singing voice in polyphonic music domain. Given a source do-
main DS = {XS , fS (X)} and source task TS , a target domain
DT = {XT , fT (X)} and target task TT . In this paper, XS de-
notes audio clips synthesized by speech clips and instrumental
music, TS is speech activity detection, and fS is latent repre-
sentations mapping function learned by the convolutional lay-
ers. XT denotes polyphonic music and TT is S-VD. Transfer
learning [13] aims to improve the learning of the target mapping
function fT () in DT using the information in TS and DS .

To investigate the performance of data augmentation by
transfer learning in S-VD and explore the possibility of trans-
ferring the knowledge from speech to singing voice, the learned
representation which retains relevant information of speech
clips, will be transferred to S-VD which is a similar but differ-
ent target task. Although there is difference between speaking
and singing, and vocals characteristics may also vary with the
change of accompaniments [17], they still have useful similar-
ities to be exploited. In addition, sharing knowledge of voice
between speech clips and the singing voice enable the detector
to understand human voice, speech or singing vocal, in a more
general and robust form.

The main contributions of this paper are: 1) to overcome the
lack of frame-level labeled training data in S-VD, we propose
a data augmentation method for S-VD by transfer learning; 2)
we investigate the performance of transferring representations
learned in speech activity detection to detect singing voice, and
find the lower convolutional layers learn more basic local repre-
sentations which are more effective for detecting vocals in poly-
phonic music; 3) patterns of convolutional filters are visually
analyzed, and the learned knowledge of voice between detec-
tors trained with synthesized audio clips and polyphonic music
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clips is compared.
The rest of the paper is organized as follows. Section 2

shows the proposed method. Section 3 describes experiments
and analyzes results in detail. Section 4 gives the conclusions.

2. Proposed method
The proposed method for S-VD is illustrated in Figure 1. To
overcome the lack of well-labeled training data in S-VD, trans-
fer learning extracts knowledge of voice from the source task
and applies it to the target task to detect singing voice. This is
crucial for our task, where the training data for the target task is
insufficient to train a good detector model. In the source task,
CNN is trained for detecting speech activity frames in synthe-
sized audio clips. The knowledge of voice learned from the
large-scale dataset in source task is then transferred to the target
task. Due to the different articulation and phonation between
speaking and singing [17], the target task is more challenging.
So a convolutional recurrent neural network (CRNN) is trained
with a small set of data collected in the target task to detect the
vocal frames.

2.1. Source task: speech activity detection

The source task is to detect the speech activity endpoints in the
synthetic audio clips to learn the representations of voice. For
the good performance of CNN in MIR [18, 19], CNN is used
as the detector in the source task. Figure 2 shows the details
of CNN. The waveforms of synthetic audio clips are converted
to log mel spectrogram, which is a 2D representation that ap-
proximates human auditory perception. This computationally
efficient input has been shown to be effective in MIR tasks such
as music classification [20].

To comprehensively consider the contextual information of
audio, the input of CNN is a moving data block, consisting of
the preceding L frames and the succeeding L frames of the cur-
rent frame, the shift between succeeding blocks is one frame.
Each block contains (2L+1) frames. L determines the range of
contexts visible in the model at every frame.

The detector consists of a series of convolutional and pool-
ing layers. To preserve the time resolution of the input, pool-
ing is applied to the frequency axis only. As shown in Figure
2, where (64, (3, 3)) corresponds to (convolutional filters, (re-
ceptive field in time, frequency)). Pooling layer is specified by
(pooling length in time, frequency). In addition, to reduce the

Clean speech

Instrumental music

CNN

Synthesized clips

Train

Source task: speaking activity detection

C
N

N

R
N

N

D
et

ec
tio

n 
la

ye
r

Polyphonic music clips

Target task: singing-voice detection

Transfer learning

Detection layer

Results

Figure 1: Framework of the proposed method.
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Figure 2: Details of the CNN architecture in the source task.

gradient vanishing problem in deep networks training, gated lin-
ear units (GLUs) [21] are used in convolutional layers. They
provide a linear path for gradient propagation while keeping
nonlinear capabilities through the sigmoid operation. Given W
and V as convolutional filters, b and c as biases, X as the input
features or the feature maps of interval layers and � as sigmoid
function, GLUs are defined as:

Y = (W ⇤X + b)� �(V ⇤X + c) (1)
where the symbol � is the element-wise product and ⇤ is the
convolution operator. By weighting time-frequency units ac-
cording to their unique time positions, GLUs can help network
attend to voice and ignore unrelated accompaniments.

The source task aims to detect whether there is speech in a
frame, which is a binary classification task. If sigmoid function
with one unit is used in the last layer of the CNN, thresholds
are needed to determine the label of each frame. To avoid the
impact of thresholds on detection results, softmax function with
two output units are used in the last layer. The label correspond-
ing to the larger output probability is used as the final label of
each frame.

2.2. Target task: singing-voice detection

When the detection aims at polyphonic songs, relying on the
CNN trained on the artificial synthesized audio clips may be
inadequate, because both articulation and phonation between
speech and singing are different [17]. In addition, the vocals
in polyphonic music will change together with the accompani-
ments. It is known that singing voice evolves in songs, which
can bring more variation to the vocal representations.

Compared with the source task based on synthesized data,
the target task is more challenging. Vocals, which change to-
gether with the accompaniments, are difficult to detect in poly-
phonic music, so a recurrent layer is added to the CNN to cap-
ture the long-term temporal contextual information of audio sig-
nal. In the target task, the detector is a convolutional recurrent
neural network (CRNN), which adds a recurrent layer after the
last convolutional layer of the CNN in Figure 2. The rest of the
CRNN is consistent with the CNN in Figure 2.

There are two modes for transferring knowledge from the
source task to the target task depending on whether the trans-
ferred parameters are updated during the training phase in the
target task. In this paper, a comparative study is conducted to
investigate the effects of two modes on the proposed system.
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2.3. Visualizing the patterns of convolutional filters

It is difficult to display or measure the knowledge in speech
and sing voice directly. Fortunately, convolutional layers in the
model can extract the features of the input data, which are indi-
rect representations of the knowledge contained in the speech
and singing voice. To intuitively inspect the differences of
knowledge in speech and singing voice, the gradient ascent [22]
is used to show the patterns learned from the data by convolu-
tional filters. Given X is a blank input image, x is the point in
X , ⌘ is learning rate and aij (x ) is the output of the filter at (i , j )
after convolution. The pattern of the filter can be calculated by:

X = X + ⌘@aij(x)/@x (2)

The visualization method applies gradient descent to the
value of the input image of a convolutional layer so as to max-
imize the response of a specific filter. Repeat this step many
times, the resulting image will be one that the chosen filter is
maximally responsive to, i.e. the pattern of the filter.

3. Experiments and results
3.1. Dataset and Experiments Setup

For the source task, artificially synthesized audio clips are re-
quired to train the CNN, which is able to learn the spectral and
temporal features of speech signal. For this reason, a private
clean speech corpus from Microsoft XiaoIce group with 100
speakers, each speaker recorded about 20 minutes of speech, in
total for about 34.5 hours, was artificially added together with
an instrumental music dataset at signal-to-noise ratio of 0 dB
to simulate polyphonic music clips. The endpoints of voice in
the clean speech are detected, hence the frame-level label of the
synthesized polyphonic audio clips are obtained, accordingly.

For the target task, the dataset consisting of 120 polyphonic
songs is divided into training and validation sets. The test set
consists of another 60 polyphonic songs. Each song in the tar-
get task is about 4 minutes long and there is no intersection of
singers in training, validation and test sets. These songs are an-
notated with frame-level on/off labels as the ground truth repre-
senting the singing voice is on or not in each audio frame. More
details, source codes and samples, please see here1.

In training, log mel spectrogram is extracted using STFT
with Hamming window length of 40 ms, which has sufficient
time and frequency resolution. An overlap of 50% between two
adjacent windows is used to smooth the spectrograms. Then
64 mel filter banks are applied. Dropout and normalization are
used to prevent over-fitting. Both the source and target tasks are
binary classification tasks, hence Adam optimizer [23] is used
to minimize the binary cross entropy.

Given the frame-wise detection results for each frame, we
can calculate precision (P ), recall (R ) and F-score (F ) of the
detection performance. They are defined as:

P =
Ntp

Ntp +Nfp
, R =

Ntp

Ntp +Nfn
, F =

2P ·R
P +R

(3)

where Ntp, Nfp and Nfn are the numbers of true positives,
false positives and false negatives, respectively. Higher P, R
and F indicate a better performance [24].

3.2. Results and analysis

To consider the long-term contextual information of the audio
clips, the input of CNN is a block totaling (2L+1 ) frames. Fig-

1https://github.com/moses1994/singing-voice-detection
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Figure 3: Results of different input lengths in the source task.

ure 3 shows the results of CNN trained with blocks of differ-
ent lengths, on the x-axis is different values of T frames, i.e.
(2L+1 ) frames, and on the y-axis is F-score. The comparison
in Figure 3 reveals that performance of detector does not im-
prove monotonically with increased length of input block, and
setting T=25 achieved a good trade-off between F-score and
computational complexity. Consequently, this value is used for
all later experiments.

Given L1, L2 and L3 denote the first, the second and the
third convolutional layer with GLUs, Lall denotes all convolu-
tional layers. In transfer learning, the Li in CRNN in the target
task will accept the learned parameters of Li in CNN in the
source task. In Fixed mode, the parameters of Li in CRNN will
no longer be updated during the backpropagation, other layers
of CRNN are trained normally. In Fine-tuning mode, the Li

in CRNN will continue to adapt its parameters with the target
dataset. Due to the limitation of space, F-score of two modes
on the test dataset of target task, and the number of trainable
parameters (N.params) are shown in Table 1.

As shown in Table 1, the performance of transferring the all
convolutional layers of the CNN in the source task and freeze
them yields the worst result. However, transferring L1 with
fine-tuning yields the best result. Transferring the knowledge
of L2 or L3 does not perform as well as L1. This may due
to lower level convolutional layers may contain more generic
features (e.g. edge or frequency detectors) that are useful for
both source and target tasks. They learn the basic and local
features of voice, but high level convolutional layers may be-
come more irrelevant in learning some high level representa-
tions. The singing voice in the target task is more complex
than the speech in the source task, because the singing voice
will change with the polyphonic accompaniments. Hence, the
high level representations of voice learned by the higher con-
volutional layers from speech may not match the target task,
resulting transferring this knowledge does little in helping the
target task. To show the difference between source domain
and target domain more intuitively, Figure 4 shows the results
of high-dimensional acoustic features clustering of synthesized
polyphonic audio samples and singing voice samples in poly-
phonic music by t-SNE [25]. It can be seen from the Figure
4 that the features of the synthesized polyphonic audio sam-
ples in the source task are clearly separated from the features
of the actual singing voice samples in the target task after high-
dimensional clustering. Therefore, the synthesized polyphonic
audio samples cannot completely simulate the characteristics of
the singing voice in polyphonic instrumental music, which leads
to the fact that the knowledge learned by the vocal detector from
the source task cannot be fully applied to the target task.

Table 1: The results of two different transfer modes.

Transferred layer
Fixed Fine-tuning

F-score N.params F-score N.params
L1 91.9% 20.58K 93.2% 20.72K
L2 91.7% 13.33K 92.0% 20.72K
L3 91.1% 13.33K 91.7% 20.72K
Lall 82.6% 5.79K 92.3% 20.72K
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Figure 4: Visualization of features distribution using t-SNE
[25], the red points and blue points denote singing voice sam-
ples in the target task and synthesized polyphonic audio samples
in the source task, respectively.

To gain deeper insights of the knowledge in the source and
target tasks, we visualized the learned patterns of filters in con-
volutional layers with GLUs. Due to the limitation of space,
patterns which are randomly selected from different filters, is
shown in Figure 5. Please see here1 for more details. In Figure
5, for the same model in a task, L1 learns more obvious basic
local features of the input spectrogram than L2 and L3. For
different models in the two tasks, compared with the learned
patterns of L2 and L3, the patterns of L1 in the two task are
more similar. This may be the reason why transferred L1 per-
forms best in Table 1. Since the local representations of voice
learned in the source task and target task are relatively similar,
transferring this knowledge to target domain can help the model
obtain a more general and robust vocal detection. For the L2

and L3, the high level representations they learned from differ-
ent domain is quite different, hence transferring this knowledge
provides little help to the target task.
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Figure 5: Patterns of different filters in Li, for each subgraph,
the x-axis is time (T ) and the y-axis is frequency (F ).

When the optimal transfer mode is determined, the detec-
tion results on the test set in the target task are shown in Ta-
ble 2. The baseline is a deep CNN architecture with 3-by-
3 2D convolution layers [26] trained directly with the dataset
in the target task. And [26] implies that CNN may benefit
from looking at a varying range of time and frequency to learn
vocal-specific characteristics, such as timbre [27]. For most
polyphonic songs in Table 2, the results of the proposed data
augmentation method by transfer learning have better F-score

Figure 6: From top to bottom, they are visualization of the
ground truth, the results of proposed method and baseline, re-
spectively. Shaded parts indicate singing voice activity.

higher than the baseline. A very robust sample of detection re-
sults is shown in Figure 6.

The singing-voice detector trained by the transfer learning
was also tested on MUSDB18 [28] to compare the performance
on the publicly available music dataset. MUSDB18 contains
150 tracks (⇠10h duration) of different styles, the 150 tracks
are split into 100 tracks for training, and 50 for testing. The
detection results on the test set in MUSDB18 are shown in Table
3. In addition to the precision, the model trained by transfer
learning in this paper is better than the baseline in recall and F-
score. The reason may be that the training data in this paper has
more types of samples, and the model can learn more different
information in the process of transfer learning.

Table 2: The detection results on the test set in the target task.

Polyphonic

song

Frames Baseline [26] Transfer learning

off on P (%) R (%) F (%) P (%) R (%) F (%)
No.1 2938 5384 82.8 85.4 84.1 92.9 97.3 95.1
No.2 4166 7476 83.0 90.0 86.3 89.6 98.6 93.9
No.3 4945 5754 86.5 91.6 89.0 89.3 96.5 92.8
No.4 3390 6098 79.6 91.4 85.1 84.1 91.8 87.8
No.5 5844 8366 96.4 93.2 89.7 88.4 92.9 90.6
No.6 2744 4793 84.5 92.3 88.2 86.5 91.7 89.1
No.7 6423 2911 89.5 94.4 91.9 86.7 93.7 90.1
No.8 1475 4561 90.2 94.3 92.2 91.0 97.8 94.2
No.9 2458 9922 66.6 89.9 76.5 70.8 91.4 79.8
• • • • • • • • • • • • • • • • • • • • • • • • • • •

No.60 3218 7220 96.5 95.7 96.1 95.8 97.7 96.8
Overall 86.1 93.2 89.5 90.1 96.0 93.2

Table 3: The detection results on the test set in MUSDB18 [28]

Baseline [26] Transfer learning

P (%) R (%) F (%) P (%) R (%) F (%)
96.83 81.64 88.61 92.98 96.57 94.74

4. Conclusions
To overcome the limitation of insufficient frame-level labeled
training data in S-VD, this paper proposes a data augmenta-
tion method for S-VD by transfer learning. Due to the shortage
of well-labeled polyphonic music data, a training set of clean
speech and instrumental music are added together to construct
the basic training dataset. The knowledge learned from the arti-
ficial training set is then transferred to a small but more matched
dataset of singing vocals with instrumental accompaniments, by
adapting the corresponding detector parameters to make a better
singing voice detector.

By analyzing the patterns of filters, we found the patterns
learned from the source task does not match well with target
task. This mismatch can be reduced by fine-tuning the convo-
lutional filters parameters at the lower layers of the model. By
transferring the related knowledge to make up for the lack of
well-labeled training data in S-VD, the proposed data augmen-
tation method by transfer learning can improve S-VD perfor-
mance with an F-score improvement from 89.5% to 93.2%.
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