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Abstract

Singing voice conversion is converting the timbre in the source

singing to the target speaker’s voice while keeping singing con-

tent the same. However, singing data for target speaker is much

more difficult to collect compared with normal speech data.

In this paper, we introduce a singing voice conversion algo-

rithm that is capable of generating high quality target speaker’s

singing using only his/her normal speech data. First, we man-

age to integrate the training and conversion process of speech

and singing into one framework by unifying the features used in

standard speech synthesis system and singing synthesis system.

In this way, normal speech data can also contribute to singing

voice conversion training, making the singing voice conversion

system more robust especially when the singing database is small.

Moreover, in order to achieve one-shot singing voice conver-

sion, a speaker embedding module is developed using both speech

and singing data, which provides target speaker identify infor-

mation during conversion. Experiments indicate proposed sing

conversion system can convert source singing to target speaker’s

high-quality singing with only 20 seconds of target speaker’s

enrollment speech data.

Index Terms: Singing Voice Conversion , Singing Synthesis,

Speaker D-vector, Speaker Embedding

1. Introduction

Singing is one of the predominant form of the music arts and

singing voice conversion and synthesis can have many potential

applications in entertainment industries. Over the past decades,

many methods have been proposed to increase the naturalness

of synthesized singing. These include the methods based on

unit selection and concatenation[1] as well as more the recent

approaches based on deep neural network (DNN) [2] and auto-

regressive generation models [3].

While existing singing synthesis algorithms are able to pro-

ducing natural singing, it basically requires large amount of

singing data from one same speaker in order to generate his/her

singing. Comparing to normal speech data collection, singing

data is much more difficult and more expensive to obtain. To

alleviate such limitations, data efficient singing synthesis ap-

proaches [4] have been proposed recently. In [4], a large singing

synthesis model trained from multi-speaker is adaptively fine-

tuned with a small amount of target speaker’s singing data to

generate the target singing model. Alternatively, singing gen-

eration for new voices can be achieved through singing voice

conversion. The goal of singing voice conversion is to convert
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the source singing to the timbre of target speaker while keeping

singing content untouched. Traditional singing voice conver-

sion [5, 6, 7] relies on parallel singing data to learn conversion

functions between different speakers. However, a recent study

[8] proposed an unsupervised singing voice conversion method

based on WaveNet [9] autoencoder architecture to achieve non

parallel singing voice conversion. In [8], neither singing data

nor the transcribed lyrics or notes is needed.

While above mentioned methods could efficiently generate

singing with new voices, they still require an essential amount

of singing voice samples from target speakers. This limits the

applications of singing generation to relatively restricted sce-

narios where there has to be target speaker’s singing data. On

the other hand, normal speech samples are much easier to col-

lect than singing. There are only limited studies on investigat-

ing to use normal speech data to enhance singing generation.

The speech-to-singing synthesis method proposed in [10] at-

tempts to convert a speaking voice to singing by directly modi-

fying acoustic features such as f0 contour and phone duration

extracted from reading speech. While speech-to-singing ap-

proaches could produce singing from reading lyrics, it normally

requires non-trivial amount of manual tuning of acoustic fea-

tures for achieving high intelligibility and naturalness of singing

voices.

Duration Informed Attention Network (DurIAN)[11], orig-

inally proposed for the task of multimodal synthesis, is essen-

tially an autoregressive feature generation framework that can

generate acoustic features (e.g., mel-spectrogram) for any audio

source frame by frame. In this paper, we proposed a DurIAN

based speech and singing voice conversion system (DurIAN-

SC), a unified speech and singing conversion framework1. There

are two major contributions for the proposed method: 1) De-

spite the input feature for conventional speech synthesis and

singing synthesis is different, proposed framework unifies the

training process for both speech and singing synthesis. Thus in

this work, we can even train the singing voice conversion model

just using speech data. 2) Instead of the commonly used train-

able Look Up Table (LUT)[8] for speaker embedding, we use a

pre-trained speaker embedding network module for speaker d-

vector[12, 13] extraction. Extracted speaker d-vectors are then

fed into singing voice conversion network as the speaker em-

bedding to represent the speaker identity. During conversion,

only 20 seconds speech or singing data is needed for the tester’s

d-vector extraction. Experiments show proposed algorithm can

generates high-quality singing voices when using only speech

1Sound demo of proposed algorithm can be found at
https://tencent-ailab.github.io/learning_

singing_from_speech
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Figure 1: Model architecture of DurIAN-SC. RMSE means root mean square energy, FC represents the full connected layer, Expansion

means expanding the time dimension to frame level.

data. The Mean Opinion Scores (MOS) of naturalness and sim-

ilarity indicates our system can perform one-shot singing voice

conversion with only 20 seconds tester’s speech data.

The paper is organized as following. Section 2 introduces

the architecture of our proposed conversion model. Experi-

ments are introduced in Section 3. And section 4 is the con-

clusion.

2. Model Architecture

2.1. DurIAN-SC

While DurIAN was originally proposed for the task of multi-

modal speech synthesis, it has many advantages over conven-

tional End-to-End framework, especially for its stable in synthe-

sis and its duration controllability. The original DurIAN model

is modified here to perform speech and singing synthesis at the

same time. Here we use text/song lyric as one of input for both

speech and singing data. Text or song lyric is then transferred

to phone sequence with prosody token by text-to-speech TTS

front-end module. The commonly used music score is not used

in our singing voice conversion framework. Instead, we use

frame level f0 and average Root Mean Square Energy (RMSE)

extracted from both original singing/speech as additional input

conditions (Fig. 1). For singing voice conversion, the f0 and

rhythm is totally decided by score notes and the content itself,

and this is the part we do not convert unless there is large gap be-

tween source and target speaker’s singing pitch range. Further,

we found that if using RMSE as input condition in training, the

loss convergence would be much faster.

The architecture of DurIAN-SC is illustrated in Fig. 1. It

includes (1) an encoder that encodes the context of each phone,

(2) an alignment model that aligns the input phone sequence

and to target acoustic frames, (3) an auto-regressive decoder

network that generates target mel-spectrogram features frame

by frame.

2.1.1. Encoder

We use phone sequence x1:N directly as input for both speech

and singing synthesis. The output of the encoder h1:N is a se-

quence of hidden states containing the sequential representation

of the input phones as

h1:N = encoder(x1:N) (1)

where N is the length of input phone sequences, encoder mod-

ule contains a phone embedding, fully connected layers and a

CBHG[14] module, which is a combination module of Convo-

lution layer, Highway network[15] and bidirectional GRU[16].

2.1.2. Alignment model

The purpose of alignment model is to generate frame aligned

hidden states which is further fed into auto-regressive decoder.

Here, the output hidden sequence from encoder h1:N is first ex-

panded according to the duration of each phone as

e1:T = state expand(h1:N, d1:N) (2)

where T is the total number of input audio frames. The state ex-

pansion is simply the replication of hidden states according to

the provided phone duration d1:N. The duration of each phone

is obtained from force alignments performed on input source

phones and acoustic features sequences. The frame aligned hid-

den states e1:T is then concatenated with frame level f0, RMSE

and speaker embedding, as we can see in Fig. 1.

e
′

1:T = FC(e1:T ∨ f1:T ∨ r1:T ∨D1:T) (3)

where ∨ indicates concatenation,FC indicates the fully con-

nected layer, f1:T represents f0 for each frame, D1:T represents

the speaker embedding expanded to frame level. And r1:T is the

RMSE for each frame.

2.1.3. Decoder

The decoder is the same as in DurIAN, composed of two auto-

regressive RNN layers. Different from the attention mechanism

used in the end-to-end systems, the attention context here is

computed from a small number of encoded hidden states that

are aligned with the target frames, which reduces the artifacts

observed in the end-to-end system[14]. We decode two frames

per time step in our system. The output from the decoder net-

work y
′

1:T is passed through a post-CBHG [14] to improve the

quality of predicted mel-spectrogram as

y
′

1:T = decoder(e
′

1:T) (4)
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ŷ1:T = cbhg(y
′

1:T) (5)

The entire network is trained to minimize the mel-spectrogram

prediction loss the same as in DurIAN.

2.2. Singing Voice Conversion Process

The training stage is illustrated in Fig. 2, and the converting

stage is illustrated in Fig. 3.

2.2.1. Data Preparation

Our training dataset is composed a mix of normal speech data

and singing data. TTS front-end is used to parse text or song

lyrics into phone sequence. Acoustic feature including mel-

sepctrogram, f0 and RMSE are extracted for every frame of

training data. Note that the f0 is extracted with World vocoder[18].

Since DurIAN structure needs phone alignment as input, a Time

delay neural network (TDNN) is employed here to force-align

the extracted acoustic feature with phone sequence. Different

from normal TTS for Mandarin which use phone identity plus

5 tones in the modeling, non-tonal phones are used in our ex-

periment to bridge the gap between speech phones and singing

phones. Finally, phone duration can be extracted from the aligned

phone sequence.

2.2.2. Speaker embedding network

To provide the DurIAN-SC with robust speaker embedding on

Mandarin language. External Mandarin corpora are explored

to train a speaker embedding network, which is then used as a

pre-trained module. The external training set contains of 8800

speaker drawn from two gender-balanced public speech recog-

nition datasets2. The training data is then augmented 2 folds

to incorporate variabilities from distance (reverberation), chan-

nel or background noise, resulting in a training pool with 2.8M

utterances. 257-d raw short time fourier transform (STFT) fea-

tures are extracted with a 32ms window and the time shift of fea-

ture frames is 16ms. The non-speech part is removed by a en-

ergy based voice activity detection. The utterance is randomly

segmented into 100-200 frames to control the duration variabil-

ity in the training phase. For the choice of network architecture,

we employ a TDNN framework which is similar to [13, 19].

The speaker embedding training guilded with a multi-task loss,

which employs both the large margin cosine loss (LMCL) and

the triplet loss [20, 21, 22].

In order to further boost the capability for singing data, the

internal singing corpus is incorporated in the speaker embed-

ding training. Since the singing corpus is not provided with

speaker label, we employ a bottom-up hierarchical agglomera-

tive clustering (HAC) to assign a pseudo speaker label for each

singing segment. Specifically, we first extract speaker embed-

ding for singing corpus using the external speaker embedding

model. Then, HAC is applied to produce 1000 speaker “IDs”

from the training singing corpus (3500 singing segments). Fi-

nally, the clustered corpus is pooled with external speech data

for another round of speaker embedding training. The final sys-

tem is utilized to extract speaker embedding for speech/singing.

2.2.3. Training and conversion process

In the training stage, both the normal speech and singing data

could be used as input training data. The f0, RMSE, phone se-

quence and phone duration are extracted as shown in section

2.2.1. Speaker embedding are extracted using the pre-trained

speaker embedding network introduced in the previous section.

DurIAN-SC model is then trained based on these extracted acous-

tic features and speaker embedding.

In singing voice conversion stage, f0, RMSE and phone du-

ration are extracted from source singing and later used in con-

version process as condition. Using the pre-trained speaker em-

bedding network, target speaker embedding can be obtained by

testing on target speaker’s singing or speech data with a length

of only 20 seconds. By conditioning on the extracted target

speaker embedding, mel-spectrogram can be generated with tar-

get speaker’s timbre through the model trained in the last ses-

sion. Finally, WaveRNN [17] is employed as Neural Vocoder

for waveform generation.

In case there is large gap between source and target speaker’s

singing pitch range, which often happen when performing cross

gender conversion, we shift original source key linearly to make

it easier for target speaker to ’sing’ the same song as source. The

input f0 is multiplied by a factor ν as:

ν =
mean(xt)

mean(xs)
(6)

where xs is the source singing f0, xt

i is the target register speech

or singing f0. mean represents to average f0 across all vowel

phones in all the audios by the source or target speaker.

2http://en.speechocean.com/datacenter/details/254.htm
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3. Experiments

3.1. Dataset

Two databases are used in our experiments. Database A is a

large multi-singer Mandarin singing corpus containing 18-hour

singing data. There are 3600 singing segments from various

songs in corpus A, and each with an average length of 20 sec-

onds. Each singing fragment is by a different singer. Amongst

all singing fragments, 2600 are by female singers and 1000 are

by male singers. This multi-singer singing corpus are recorded

by singers themselves with various recording devices. All songs

are down sampled to 24kHz.

Database B is speech database containing 10-hour multi-

speaker Mandarin normal TTS speech data. There are 3 male

speakers and 4 female speakers in this corpus, each with a du-

ration around 1.5 hours. The sampling rate is also set to 24kHz.

In the singing voice conversion experiments, all source singing

is chosen randomly from another mandarin singing corpus C.

3.2. Model Hyperparameters

In our experiment, the dimensions of the phone embedding,

speaker embedding, encoder CBHG module, attention layer are

all set to 256. The decoder has 2 GRU layers with 256 dimen-

sion and batch normalization is used in the encoder and post-net

module. We use Adam optimizer and 0.001 initial learning rate

with warm-up [23] schedule. In training stage, a total of 250k

steps with a batch size of 32 were trained till convergence.

3.3. Naturalness and Similarity Evaluation

In the singing voice conversion test, Mean Opinion Scores (MOS)

on naturalness and similarity to target speaker are evaluated.

The scale of MOS is set between 1 to 5 with 5 representing the

best performance and 1 the worst. 10 testers participated in our

listening test.

3.3.1. Experiment on speaker embedding representation

In this experiment, we compare the singing naturalness and sim-

ilarity to target speaker by proposed d-vector based speaker em-

bedding and LUT based trainable speaker embedding. Two sys-

tems are built respectively. The training dataset used here is the

18-hour singing database A introduced in section 3.1. We use a

total of 3500 singing fragments in training. In testing, 3 female

and 3 male singers are randomly chosen from training set for in-

set test. To evaluate the out-set singing voice conversion perfor-

mance, 4 speakers from the speech dataset B are chosen for test.

Here, only a 20s period of singing or speech data are used from

each testers for speaker d-vector extraction. As the baseline

system, the LUT based trainable speaker embedding is trained

alongside the singing voice conversion DurIAN-SC model. The

out-of-set baseline system is not tested because baseline system

can not convert to unseen target.

Table 1: Comparison of speaker embedding extraction meth-

ods: LUT and speaker D-vector. The ’Target Singer’ column

indicates whether target speaker’s singing data is used in train-

ing.

Method Target Singer Naturalness Similarity

D-vector in-set 3.70 3.61

LUT in-set 3.61 3.56

D-vector out-of-set 3.69 3.10

LUT out-of-set - -

As shown in Table 1, for the in-set test, proposed D-vector

speaker embedding system outperforms the baseline LUT speaker

embedding system in both MOS naturalness and similarity by

a small margin. The result is in line with expectations. For the

baseline trainable LUT speaker embedding system, the speaker

embedding is trained alongside the singing voice conversion

model, that makes the total free parameter in the system is actu-

ally more than proposed method especially for the ’seen’ speaker.

However on the other side, because there is only 20 seconds data

per each singer in the training, it could be hard for the trainable

LUT speaker embedding method to learn a really good speaker

embedding. Meanwhile, proposed speaker embedding network

is an independent module which is pre-trained on a lot extra

speaker recognition data. While for the out-set test, the MOS

scores for proposed method is lower than in-set test especially

on similarity. We believe this is normal result for the model

parameters are not fine-tuned with the ’unseen’ speaker’s data.

And speaker d-vectors are extracted from only 20 seconds of

target speaker’s register speech or singing. At least, unlike the

baseline system, proposed method save the trouble to fine-tune

and update model parameters for each new user.

3.3.2. Using speech corpus in singing voice conversion

To demonstrate proposed system can learn singing voice con-

version from only speech data, three different systems are trained

using: 1) only speech data, 2) mix of speech and singing data,

and 3) singing data only, respectively for comparison.

Table 2: Singing voice conversion experiments trained with

speech data. Dataset indicates the type of training data.

Dataset Naturalness Similarity

Speech & Singing 3.71 3.74

Only Speech 3.65 3.71

Only Singing 3.70 3.61

Results in Table 2 show that all three above mentioned sys-

tems has close performance. This interesting result indicates

that in the proposed system, speech data can contribute equally

to singing voice conversion as singing data. In this case, we can

use only speech data when target’s singing data is not available.

In our experiments, it is noticed that by adding some speech

data to singing voice conversion training process, the generated

target singing will have clearer pronunciation. Speech data in

training also helps to improve the singing voice conversion sim-

ilarity.

4. Conclusion

In this paper, we proposed an singing voice conversion model

DurIAN-SC with a unified framework of speech and singing

data. For those speakers with none singing data, our method

could convert to their singings by training on only their speech

data. Through a pre-trained speaker embedding network, we

could convert to ’unseen’ speakers’ singing with only a 20 sec-

ond length of data. Experiments indicate the proposed model

can generate high-quality singing voices for in-set ’seen’ tar-

get speakers in terms of both naturalness and similarity. In

the meanwhile, proposed system can also one-shot convert to

out-of-set ’unseen’ users with small register data. In the future

work, we will continue to make our model nore robust and im-

prove the similarity of the ’unseen’ singing voice conversion.
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