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Abstract

We present UTACO, a singing synthesis model based on
an attention-based sequence-to-sequence mechanism and a
vocoder based on dilated causal convolutions. These two
classes of models have significantly affected the field of text-
to-speech, but have never been thoroughly applied to the task
of singing synthesis. UTACO demonstrates that attention can
be successfully applied to the singing synthesis field and im-
proves naturalness over the state of the art. The system re-
quires considerably less explicit modelling of voice features
such as FO patterns, vibratos, and note and phoneme durations,
than previous models in the literature. Despite this, it shows a
strong improvement in naturalness with respect to previous neu-
ral singing synthesis models. The model does not require any
durations or pitch patterns as inputs, and learns to insert vibrato
autonomously according to the musical context. However, we
observe that, by completely dispensing with any explicit dura-
tion modelling it becomes harder to obtain the fine control of
timing needed to exactly match the tempo of a song.

Index Terms: Singing voice synthesis, attention, machine
learning, deep learning, autoregressive models

1. Introduction

Research efforts on computer-aided singing synthesis systems
date back to the late 1950s [1]. Historically, the working prin-
ciples of singing synthesis systems have been based on para-
metric text-to-speech (TTS) or unit selection technology. No-
table recent examples are Sinsy [2], a statistical parametric
singing synthesis system, and Vocaloid [3], based on unit se-
lection. A recent development in the field is the introduction of
deep neural networks (DNN) [4]. The latest version of Sinsy
adopts DNNss [5], and DNN sub-models exist to predict specific
features of a singing voice, such as FO [6] or note transition
and sustain patterns [7]. The introduction of the WaveNet ar-
chitecture [8] marked an increase in the importance of DNN
techniques for TTS. Singing synthesis followed, with the in-
troduction of several DNN-based models. Examples include
[9, 10, 11], which present variations on a model of a singing
voice based on WaveNet[8], and [12] developing a WGAN ar-
chitecture. A common feature of all these singing synthesis
models is the need to develop a number of separate specialised
sub-models to predict specific voice features such as the FO con-
tour, the duration of individual phonemes, or the start time of
notes (which, in natural singing voices, do not follow exactly
the timing of the score [2]). A development in TTS technol-
ogy that is relevant to our work has been the introduction of
attention-based architectures [13] such as Tacotron [14, 15] and
Deep Voice [16], attention-based sequence-to-sequence (AS2S)
models which predict spectrograms that are subsequently used
to synthesise a waveform with a vocoder. For our purposes, the
most salient feature of AS2S architectures is that its only condi-
tioning input is text (or a corresponding phoneme list), and not
any additional model or piece of information. Whereas previous
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models needed to be conditioned on several other pieces of con-
text, for example FO, an AS2S autonomously learns an implicit
model of all voice features that are not included in its inputs:
e.g. intonation, stress and rhythm. This point is made explicitly
in [17, 18, 19], which try to learn an explicit representation for
these features to be used in later conditioning. [20] even uses
it in singing, with an attention model that is fed pitch and du-
ration externally. In this paper, we consider the possibility that
an AS2S architecture may be able to learn an implicit model
of singing interpretation in a similar way to what it does for
speech prosody. We train an AS2S architecture on singing data,
and observe that it is capable of generalising to unseen musi-
cal scores. We find that AS2S architectures, conditioned only
on the information available in a score, are capable of singing
synthesis, and they can significantly improve naturalness with
respect to the state of the art. We name our model UTACO,
from the Japanese word “J{”(“uta”), meaning song, and the be-
ginning of the word “Tacotron”.

2. System description

UTACO consists of three main parts (see Fig.1). The first is
a frontend that receives a score in MusicXML (MXL) format
[21] as input, and outputs the note embeddings to be sent to an
attention encoder. The second is an AS2S architecture, based
on [22, 23], modified to accept the note embeddings, whose de-
coder produces mel-spectrograms. The spectrograms are finally
synthesized with a vocoder. The frontend performs linguistic
analysis on the score lyrics. The phoneme sequence for the ut-
terance is inferred from the lyrics text. We allow for 3 possi-
ble vowel levels of stress (0,1,2). The punctuation is ignored.
Then the frontend determines which phonemes correspond to
each note of the score, using syllabification information spec-
ified in the MusicXML file. It also computes the duration in
seconds of each note according to the score, and finally com-
bines this information into embeddings that will be used to con-
dition the AS2S model. The modification applied to the TTS
AS2S architecture concerns the conditioning inputs to the en-
coder. Whereas a TTS AS2S generally takes as its only input
a sequence of (one-hot encoded) tokens representing phoneme
IDs for the utterance to be generated, our system uses phoneme-
level note embeddings. These consist of 5 streams, all of equal
length and concatenated:

1. The phoneme sequence for the song utterance to be gen-
erated, one-hot encoded. 84 tokens are available in this
stream, including a start (<s>), and a word boundary
(<wb>) one.

2. The octave sequence for the note to be sung on each
phoneme, according to the score, one-hot encoded. For
example, for the sequence of notes C4, D#4, G3, the cor-
responding octave sequence would be (4, 4, 3). We allow
for 4 values, which is the range found in our dataset.

3. The step in the chromatic scale (out of 12 possible ones)
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Figure 1: Diagram of UTACO’s arhitecture.
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Figure 2: Distribution of pitch changes in the dataset. Left
(right) panel shows the distribution of the original (of aug-
mented) data.

for the note to be sung on each phoneme, according to
the score, e.g. G#, or B-, one-hot encoded.

The duration in seconds of the note to be sung on each
phoneme, represented as a floating point number (z-
score normalised).

. A position embedding computed as a ramp represent-
ing the advancement of the note for each phoneme that
it contains, as a floating point number in the interval
[0,1]. For example, if three phonemes have to be sung
on a given note, the first phoneme will have 1.0 on this
stream, the second 0.5, and the last 0.0.

Streams 2-4 are repeated for the length of the note. For exam-
ple, if the word “give” is to be sung on a G3 for 0.37 seconds,
the tokens (“g”, “ih1”, “v”, “<wb>") will be put in stream 1
(as in Fig.3), stream 2 w111 contain the octave (3, 3, 3, 3), the
corresponding positions in stream 3 will contain (G, G, G, G),
and those in stream 4 will contain the z-score normalised values
corresponding to (0.37, 0.37, 0.37, 0.37). Stream 5 will contain
(1.0, 0.67, 0.33, 0.0). If a phoneme has to be sung on several
notes, the phoneme is repeated while the other streams change.
For example, to sing the phoneme “uw1” on two notes, G and
E, each of duration 0.1 seconds, followed by one 0.2 second
F, then stream 1 will contain (“uwl”, “uwl”, “uwl”); while
stream 3 will contain (G, E, F) and stream 4 (0.1, 0.1, 0.2).
The ramp also helps disambiguate ties, such as the one in Fig.3.
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phoneme <s> d eyl z iy <wb> d eyl z iy <wb>
octave 4 4 4 4 4 4 3 3 3 3 3
duration 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
step 5 5 5 2 2 2 10 10 5 5 5
progress  1.00 0.50 0.00 1.00 0.50 0.00 1.00 0.00 1.00 0.50 0.00
ig ihl v <wb>| m iyl <wb> j er <wb>
13 3 3 3 13 3 3 3 3 3
30.37 0.37 0.37 0.373 0.37 0.37 0.37 0.37 0.37 0.37
17 7 7 7 19 9 9 10 10 10
31.00 0.67 0.33 0.003 1.00 0.50 0.00 1.00 0.50 0.00
! |
ael n s er <wb> id uwl uwl <wb> pau
3 3 3 3 3 3 3 3 3 0
0.74 0.74 0.37 0.37 0.37:1.11 1.11 0.74 0.74:0.37
7 7 10 10 10 5 5 5 5 0
1.00 0.00 1.00 0.50 0.00:1.00 0.00 1.00 0.00:1.00
Figure 3: An example of the embeddings detailed in Sec.2.

Dashed red highlights the example illustrated in Sec.2, and dot-
ted blue shows a tie disambiguated by stream 5.

Rests are represented by a pause token, and an additional one-
hot value for octave and step. An example of the embeddings
produced can be seen in Figure 3. Compared to analogous so-
lutions, we avoided the use of embeddings in the style of [24],
which are more useful in polyphonic music. Our inputs are less
rich compared to [10], which will be discussed in Sec.5. The
rest of the architecture is an AS2S model based on [23]. It was
trained with the Adam optimisation algorithm [25] and a learn-
ing rate of 0.001 for ~300K steps. The network so organised
is capable, after standard training on a large enough dataset, to
produce spectrograms which are then synthesised by a vocoder,
see Sec.3.1 and 3.3 for more detail.

3. Experimental protocol
3.1. Dataset

The dataset consists of 96 songs in US English, sung a cappella
by a single female voice, for a total of 2 hours and 15 seconds
of music. It covers several genres, such as pop, blues rock,
and some children’s songs. The songs have been autotuned to
correct the performer’s pitch errors. Since the length of most
songs is in the order of minutes, we split them into segments of
~20-30 seconds, which correspond to ~200 phonemes. This
reduces the memory requirements at training time compared to
processing whole songs — due to the attention matrix size in-
creasing with the square of the sequence length — while keeping
the batch size large enough, at 32. In the vocoder training set
we used an additional ~40 hours of speech data by the same
speaker performing the songs. Given the small amount of data
available, we reduced the test set size to the minimum possible,
of about 5 minutes in total. Most songs contain repetitions such
as refrains or repeated pitch patterns. Holding out whole songs
would have been too costly in terms of training data, and yield-
ing too little diversification in the test set. In order to ensure
a strict separation of train and test data, we compared all pos-
sible pairs of segments. If two segments included a sequence
of 3 or more identical subsequent note pitches in the score, we
excluded both from the test set. Apart from the segments ex-
cluded because of repetitions, we selected the test set segments
randomly.



3.2. Data augmentation

A common concern in the singing synthesis field consists of the
small amount of data available to train models [10]. Song data
is symmetric to two transformations: pitch shifting and tempo
changes. Following previous literature [10, 26, 5], we employed
both. We applied the following transformations to each song in
the dataset:

« Shifting the pitch by [-1, 0, +1, +2, +3] semitones.

¢ Changing the original beats per minute (bpm) of the song
to [.85, .90, .95, 1., 1.05, 1.10, 1.15] percent of the orig-
inal one.

There are 35 possible combinations of these two augmentation
types, so the final amount of augmented data consisted of about
70 hours. This makes more contexts available to the model dur-
ing training. The change can be visualised in Figure 2. We
applied these transformations using an algorithm that preserves
perceived vocal tract length. The maximum amount of change
that can be applied before excessive degradation has been deter-
mined through informal listening tests by the authors. Despite
our attempts, the model without augmentations was unstable
and produced mediocre quality when inferring on training data,
and produced random phonemes and melody at inference on
unseen inputs. We believe that this is because the small num-
ber of contexts available in the unaugmented datasets makes the
model unable to extrapolate to unseen data. Therefore, we did
not include the model trained on unaugmented data in our ex-
perimental validation.

3.3. Vocoder

The vocoder used in this paper is an autoregressive WaveNet
based on [8], conditioned only on (80-dimensional) mel-
spectrograms as in [15].

The training data for the vocoder used in our test consisted
of the whole training set (including augmentations) used for
the AS2S model plus ~40 hours of speech data by the same
speaker. We observed that the addition of speech data to the
vocoder training set seems to increase the quality of the sam-
ples.

3.4. Baseline

We compared UTACO to WGANSing [12], the only recent
state-of-the-art (SOTA) neural singing synthesis model for
which a training protocol was released. The system is in-
spired by Deep Convolutional Generative Adversarial Net-
works (DCGAN), with a Wasserstein-GAN loss, and uses the
WORLD vocoder [27]. We compared our proposed system with
WGANSIng trained on the same (augmented) dataset as our
model, using a slightly modified version of the protocol in the
published repository !. Specifically, the corpus used in [12] in-
cludes both a sung and spoken version of the same text for each
utterance. In the published protocol, both are used for train-
ing. Since our dataset does not have the necessary spoken data,
we only trained WGANSing on song data. The effect of this
change is discussed in Sec.3.5.1. Note that WGANSing needs
to be fed external duration and continuous pitch, which we ex-
tracted from the original recordings. This needs to be kept in
mind for a fair comparison, since UTACO generates its own
timing and pitch patterns.

https://github.com/MTG/WGANSing, commit pc2752.
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3.5. MUSHRA methodology

We set up MUSHRA tests [28] comparing various versions of
each segment sung or synthesised in the same voice. As recom-
mended in [28], the segments chosen for the test set were fur-
ther split into chunks, each <10 seconds long. Cuts were made
in naturally occurring pauses in the songs, trying to keep the
segments as long as possible. This generated typical lengths of
~3-8 seconds. Each segment was judged by US English native
speakers, who were asked a question with this exact wording:
“Rate the samples in terms of their naturalness”. The interpreta-
tion of the word “naturalness” is left to the listeners. They rated
the samples between O (representing “Not at all natural”) and
100 (representing “Completely natural”). In all experiments, all
possible combinations of pairwise 2-sided t-tests on the means
of the scores for different systems yield a p-value <0.001.

3.5.1. MUSHRA for baseline validation

We checked that training WGANSing without any spoken data
does not alter the model performance and is therefore represen-
tative of the model’s quality. We trained WGANSing on the
same corpus” used by the authors in their publication [12]. We
compared, in a separate MUSHRA test, their published audio
clips® to the ones we produced. To replicate our MUSHRA
methodology, the audio clips have been cut into 51 segments.
30 listeners were involved in the evaluation, and each of them
listened to all of the segments. We trained a model with speech
data and another one without. The results are shown in Fig.4.
Surprisingly, WGANSing with no speech in the training data
(no_speech) has a better score than the model with speech
(with_speech). The difference in mean MUSHRA score be-
tween our best model (no_speech) and the results published
by the authors (published) is 5.89. The two score distribu-
tions for no_speech and published are very similar, ex-
cept for slightly fatter tails on the lower and higher end of the
score spectrum, respectively. Therefore, we conclude that train-
ing WGANSIng on singing data alone does not deteriorate the
model’s overall performance.

3.5.2. Mushra for proposed model

This MUSHRA test asked 40 listeners to compare 3 versions
of each of 74 segments. Each listener examined all of the seg-
ments. The upper anchor is an original recording, compared to
the same segment synthesised by UTACO. The lower anchor
is WGANSIng, representative of SOTA, described in Sec.3.4.
Note that the MUSHRA methodology requires that we train the
models compared on the same data, in order to remove dataset
bias. Because of this, WGANSing was trained on the same cor-
pus we used for the proposed system.

4. Results

The MUSHRA test results, presented in Figure Sshow that the
mean relative MUSHRA score for UTACO is 60.45, compared
to recordings which have 81.62. Compared to the baseline, at
30.82, there is a significant improvement in naturalness over
the SOTA. Upon closer inspection, we observed that most of
UTACO'’s segments in the lower score quartile (whose scores
range between 26-50) contain either a vocoder glitch (there are

2https://smcnus.comp.nus.edu.sg/
nus-48e-sung-and-spoken-lyrics-corpus/

3https://pc2752.github.io/sing_synth_
examples/ (last updated 03/02/2019)
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Figure 4: Box and violin plot of MUSHRA for the baseline,
trained on WGANSing’s corpus.

3 in the mushra dataset) or mumbled/mispronounced words.
Segments in the upper two quartiles, which obtain average
scores in the range 61-77, seem to show much less of these
problems*. The main improvement might be due to the clarity
and expressivity of our model compared to the baseline model.
The MUSHRA listeners commented on the sound quality of
the baseline defining it “muffled”, “glitchy”, “poor”. Regard-
ing the naturalness of the voice, the baseline was perceived as
“monotonous” and “too regular to sound natural”, although at
inference time it was fed oracle FO and phoneme timings from
the original recordings. In contrast to [10], UTACO sings in
tune autonomously. We found that training on non-autotuned
data produces a model that often goes out of tune. UTACO per-
forms best on simpler songs, which do not include very high
or low-pitched notes, or phonemes sustained for a long time.
Thich was expected given these contexts are under-represented
in the data (see Fig.2). Our model suffers from some artic-
ulation difficulties on low-frequency phoneme combinations.
MUSHRA listeners noticed this, and commented about “mis-
pronunciations”, but this was expected since we used only ~2
hours of unaugmented data. Since the dataset did not contain
vibrato annotations, no explicit indication of it was included
in the note embeddings. Nevertheless, we observed that the
model learns to reproduce a good vibrato, and apply it in the
right places — on longer sustained notes — according to the mu-
sical context. The two main drawbacks of UTACO are due to
the nature of the architecture of choice. First, we verified that
when a long rest, i.e. silence, is encountered in the score, the
duration of the silence produced by the encoder is completely
unpredictable. We observed that the concentration of the atten-
tion weights decreases significantly on pause tokens, leading to
instability. This issue, similar to word-skipping, seems to be
common to AS2S models in general [15, 16], but is more se-
vere in music, where pauses of any given length are frequent
and essential to the musical context and rhythm. Another pos-
sibly related drawback is that UTACO seems to produce notes
that are slightly too long or too short, losing the rhythm over
time. This could be due to the combined effect of lack of data
and augmentations. Changing the bpm of a song affects all du-
rations uniformly, so any discrepancies between score duration
and phoneme duration in the training data are correlated among
augmented versions of the same song, which would essentially
lead to overfitting on errors. In our architecture it is not possi-
ble to directly control the timing of the attention matrix. None
of the two problems reduce its ultimate ability to synthesise a
singing voice. Two easy workarounds are cutting the scores

4Model samples are available at this ad-
dress: https://www.amazon.science/blog/
a-simpler-singing-synthesis-system.
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Figure 5: Box and violin plot of MUSHRA for UTACO, trained
On our corpus.

on rests, and editing the tempo in post-processing in case the
timing problem manifests itself. We observed that low-scored
samples from the MUSHRA test seem to suffer more frequently
from vocoder glitches and mumbling than attention instabilities.
We attribute the former to the lack of data.

5. Discussion

In this paper we presented UTACO, to the best of our knowl-
edge, the first use of the attention mechanism to generate pitch
and timing in the field of singing synthesis. What sets the sys-
tem apart from other techniques, other than the noticeable im-
provement in naturalness over the SOTA, is the complete lack
of need for explicitly modelling many parts of the song synthe-
sis process. The AS2S architecture is capable of autonomously
modelling FO patterns, vibratos, and inserting vibrato in the
right context. Training UTACO requires a dataset whose size is
the same order of magnitude as typical datasets in the field [4].
Its only input is the musical score with lyrics to be synthesised:
it requires no explicit modelling of any feature of a singing
voice. As noted earlier, our embeddings are leaner than those in
[10], which also embed the previous/next phoneme, as well as
other linguistic features and more importantly phoneme length.
We hypothesise that the LSTM in the encoder plus the atten-
tion makes them redundant. Many of the previous singing syn-
thesis systems require a separate model for allocating phoneme
duration inside of a note. To increase naturalness, a model is
sometimes needed to emulate the small imperfections in tim-
ing found in natural singing, such as in [2]. In other words,
many duration values needed for the synthesis are not unam-
biguously specified by the score. Attention dispenses with the
need to model duration, and is conceptually simpler than pre-
vious systems proposed in the literature. Therefore, one major
improvement is the reduced amount of modelling work needed
to create a singing synthesis system with the method we de-
scribed here. However, the main drawbacks of employing an
AS2S architecture are in the precision of timing, and are also a
direct result of the attention model used. Some previous work
(e.g. [16, 29]) already tackled the same problems. We propose
that UTACO can be stabilised with further work, and that the
benefits of a stable attention model would ultimately justify its
use. AS2S models enjoy much active research work, and all
new extensions of such architectures, such as speaker identity,
language conditioning and style conditioning can potentially be
applied to UTACO immediately.
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