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Abstract
Auditory data is used by ecologists for a variety of pur-
poses, including identifying species ranges, estimating popu-
lation sizes, and studying behaviour. Autonomous recording
units (ARUs) enable auditory data collection over a wider area,
and can provide improved consistency over traditional sam-
pling methods. The result is an abundance of audio data –
much more than can be analysed by scientists with the ap-
propriate taxonomic skills. In this paper, we address the di-
vide between academic machine learning research on animal
vocalisation classifiers, and their application to conservation
efforts. As a unique case study, we build a Bornean gib-
bon call detection system by first manually annotating exist-
ing data, and then comparing audio analysis tool kits includ-
ing end-to-end and bag-of-audio-word modelling. Finally, we
propose a deep architecture that outperforms the other ap-
proaches with respect to unweighted average recall. The code is
available at: https://github.com/glam-imperial/
Bornean-Gibbons-Call-Detection
Index Terms: Primate vocalisations, animal vocalisations,
Bornean gibbon detection, bioacoustics, deep learning

1. Introduction
Bioacoustic data is used by ecologists to study a wide range of
taxonomic groups, including birds, dogs, insects, amphibians,
primates, bats, and cetaceans [1, 2, 3, 4, 5]. Sound data is used
to infer species distributions, population abundance, and move-
ment patterns, and to gain information on life cycles, mating
behaviours, and invasive species. It can even be related to en-
vironmental characteristics like temperature [6]. The resulting
insights inform not only the management of vocal species, but
also their ecosystems, with soundscape change shown to act as
an effective early indicator of ecosystem disturbance [7, 8, 9].
This information enables scientists to understand and model
ecosystems at various scales, and informs how policy makers
and conservationists manage species [10].

Despite its importance, baseline data on ecosystems
is largely constrained by current collection and processing
tools [11]. For terrestrial animal monitoring specifically, the
most common survey methods continue to be transect/plot sam-
pling and capture-mark-recapture methods [12]. Traditional
methodologies, like these, require that scientists or technicians
be physically present to collect information visually, auditorily,
or via close-range sensing tools. Hence, the amount of data col-
lected is restricted by the amount of resources they are able to
commit to fieldwork.

*Equal contribution.

Together with motion sensing cameras, remote sensing
drones, wireless sensor networks, and environmental DNA col-
lection, autonomous recording units (ARUs) are part of a set
of technology ecologists are applying to address the limitations
of traditional field data collection [11]. Advances in integrat-
ing solar-power and network technology into ARUs suggests
the potential to make passive acoustic monitoring (PAM) even
more pervasive, reducing the need for regular visits to replace
batteries or collect data stored in memory [13]. Recorders are
able to monitor consistently for long periods, and can even be
placed in remote or dangerous locations by helicopter or drone.
Additionally, the presence of an ARU is less likely to affect an-
imal behaviour than a human observer.

While recording devices (targeted and autonomous) pro-
vide an abundance of both passively and actively collected data,
the utility of that information is limited without automated pro-
cessing. Until recently, automatic quantification/filtering of
ARU data was mostly used for soundscape analysis and species
that vocalise at unique frequency ranges (e. g., whales and bats).
However, advances in machine learning have made finer-scale
data processing possible and applicable to a wider variety of
animals.

In this paper, we aim to examine and address limitations
in model creation by building a Bornean gibbon call detection
system. Part of our motivation for studying gibbons stems from
the fact that they share a number of voice perception abilities
as humans [14, 15, 16]. We build our system for the Stabil-
ity of Altered Forest Ecosystems (SAFE) Project, as its solar-
powered, mobile connected ARU network provides a unique
opportunity to use machine learning for large-scale, continuous
ecological monitoring [13]. To this end, we develop a graph-
ical user interface (GUI) tool for rapidly annotating vocalisa-
tion data. For call detection, we propose a new convolutional
recurrent neural network (RNN) architecture that uses a Mel-
spectrogram as input. We compare our method with two re-
cently proposed toolkits for audio representation and analysis,
namely the End2You [17] and the openXBOW [18] toolkits.
The End2You toolkit is an end-to-end method using the raw
waveform [19, 20], and the openXBOW creates a bag-of-audio-
words representation using hand-crafted audio features such as
low-level descriptor (LLD) features as input. Our proposed ar-
chitecture outperforms in terms of Unweighted Average Recall
(UAR) the other two methods.

2. Related Work
To detect animal sounds, researchers often split audio into short
segments and treat each segment as a binary classification prob-
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lem. The 2017 and 2018 DCASE bird challenges [21] define
bird call detection as just that, requesting entries that detect bird
calls, using short segments of standard length, and a binary la-
bel indicating the presence or absence of a bird call [22]. This
method has been successfully applied in ecosystem monitoring
[23, 24].

In studies where individual calls need to be differentiated, a
binary classifier will not suffice. Options for finer-scale tem-
poral or spectral labelling include (in increasing complexity)
detecting event onsets, monophonic segmentation, polyphonic
segmentation, time-frequency boxes, and time-frequency blobs
or sinusoids. Stowell et al. [22] summarise these output formats,
along with their advantages and disadvantages.

The primary difficulty of these more complex methods is
the time required for producing accurately labelled training and
testing data. Some studies have attempted to address this issue
by using crowd/citizen science, though such methods produce
labels with varied accuracy [25]. Alternatively, Fanioudakis and
Potamitis [26] show the potential for deep autoencoders (U-
nets) to provide location information on weakly labelled data,
which could be used as a pre-processing method for training.

The lack of large, even weakly labelled datasets, limits the
ability for researchers to use supervised machine learning meth-
ods for ecological acoustic monitoring. High performing audio
classification methods like convolution neural networks (CNNs)
require a sizeable volume of data to train without overfitting.
Moreover, in ecological monitoring, an increased amount of
data may be needed to account for soundscape variation. Of-
ten, field recorders can differ in the quality of the audio they
collect, and the vocalisations of target species may be distorted
by distance, other animal sounds, or significant environmental
noise, such as wind and rain.

3. Dataset
The data used in this study were collected for the purposes of
the SAFE Project. 1 The project’s site spans over 8 000 hectares
of land with 12 recorders in Malaysian Borneo, including Vir-
gin Jungle Reserve (VJR), logged and fragmented forest, and
palm oil plantation. For our purposes, we use machine learning
approaches to detect Bornean gibbon (Hylobates muelleri) calls
in the SAFE Project’s ARU data. The Bornean gibbon is one of
18 species of ape in the family Hylobatidae. While the SAFE
Project audio data contains vocalisations from a wide range of
taxonomic groups, we chose this species because:

• Gibbon calls are loud and distinct, making their identifi-
cation in audio easier for a non-expert surveyor.

• Gibbon calls are variable, allowing this study to test
model generalisability across call types.

• Despite considerable resources dedicated to monitoring
primates, little research is done on the automatic classi-
fication of primate vocalisations.

• As with most gibbon species, Bornean gibbons are en-
dangered, with a 50 percent decrease in population over
the past three generations.

• Gibbon vocalisation tends to follow circadian patterns,
with male/female duets occurring regularly in the morn-
ing. This characteristic makes developing a training
dataset from unlabelled audio easier.

1https://www.safeproject.net

3.1. Annotation

There are several approaches to annotating animal vocalisa-
tions such as presence/absence, polyphonic segmentation, time-
frequency blobs, time-frequency boxes etc [22]. While some
of these, like bounding-box annotations, provide greater reso-
lution, most studies label fixed-sized clips based on presence or
absence. This simpler approach has the benefit of decreasing la-
belling time and requiring less precision in annotation, the latter
of which can be difficult for soft calls, noisy environments, and
non-expert listeners.

The behavioural ecology of gibbons makes higher resolu-
tion annotation largely impractical. Gibbons tend to travel in
large groups, vocalise at the same time, and display a variety of
call lengths. Localising single calls, such as by using a spec-
trogram bounding-box method, would likely be subjective and
inaccurate. Therefore, in this study, we focused on detecting
gibbon occupancy rather than quantifying call abundance.

To this end, we create a GUI tool, where a user can load
audio files into a media player (Fig. 1). Similar to doing an
avian point count survey, as audio plays, the annotator can add
millisecond timestamps to a survey record when hearing vo-
calisations. Keyboard shortcuts can be used to include custom
labels, allowing timestamps to be differentiated by call type
and volume. This feature proved to be helpful in later clip
extraction steps and for more nuanced analysis of model per-
formance. It could also eventually provide a means to label
multiple species simultaneously. Survey records are saved in
a relational database and can be edited, exported, and used to
extract training data.

Figure 1: Proposed GUI tool for manually annotating audio
clips.

The software converts longer audio to training examples us-
ing custom parameters for clip length and overlap. To account
for both human and computer lag times, we implement an algo-
rithm to extract positive and negative examples with high cer-
tainty. This method has a number of benefits, allowing for dy-
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Figure 2: Proposed deep neural network architecture. The input representation is passed through a convolution neural network before
passing to a recurrent neural network with gated recurrent units for the final prediction.

namic clip size/overlap, varied call location within clips, and
continuous (often context-dependent) annotation. However, to
assess performance on non-curated data, the validation and test
sets were annotated manually for presence/absence on continu-
ous audio split into fixed-sized clips.

We used our tool to annotate and extract gibbon call data.
In total, 4 annotators were used. We kept the audio clips where
all annotators agree that a gibbon call is present or absent. Each
clip was segmented with a window length of 5 s and a percent-
age overlap of 50 %. In order to create a dataset such that the
trained model would be able to generalise to unseen audio clips,
we consider the following characteristics for the audio clips: (a)
recorder location: recorders are placed in a wide range of loca-
tions, including VJR, logged forest, palm plantation, and ripar-
ian easements, (b) audio noise: for example, weather changes
and temporal soundscape variation, and (c) gibbon vocalisation
characteristics: ranging from short, high-pitched vocalisations
to the long female great call.

The final dataset contains a total of 19 370 training set ex-
amples, 848 validation set examples, and 1 680 test set exam-
ples. The training set contains 9 569 positive and 9 801 negative,
5 s audio clips. Recordings were taken from 4 recorders in ar-
eas with similar noise characteristics, ranging from one hectare
logged forest to VJR, with recording months spanning Novem-
ber through May. The validation and test sets contain clips from
a different area, different recorder, and different morning than
the training set. The validation set contains 431 positive and
416 negative clips, whereas the test set contains 884 negative
clips and 796 positive clips. We plan to release the data within
an Interspeech challenge framework.

4. Model Design
Traditional machine learning approaches first extract features
from the raw waveform in order to suppress the background
noise, and at the same time, reduce the dimensionality of the
input. In the deep learning era, a key operation using CNN
is convolution, which in the discrete domain can be defined as
follows:

(f ∗ x)[n, t] =
N∑

l=−N

T∑
k=−T

f [n, t] · x[n− l, t− k], (1)

where f [n, t] indicates a kernel function, which in our case
operates on the raw signal x[n, t], with N frequency bins, and

T time steps.
We use CNNs to model spatio-temporal characteristics of

the input representation, and the max-pooling operation to re-
duce the dimensionality of the extracted representation while
preserving the necessary statistics of the convolved signal.

While 2D convolutions extract spatiotemporal features by
removing background noise, we also utilise RNN models to
capture the temporal dynamics in the signal. For our purposes,
we use gated recurrent units (GRU) as they have few parameters
and fast convergence of the optimisation.

4.1. Proposed model

Our model, which aims to learn the extracted features and the
classification step in one jointly trained model, is depicted in
Fig. 2 and described below.

Input. First we choose the input representation. Since gib-
bons share highly similar vocal properties as humans, we ex-
tract Mel-spectrograms from the raw audio signal. We utilise
128 Mel-bands, over a 5 sec window, yielding an input repre-
sentation of size of 128× 431× 1.

Convolution layer. We utilise 128 time finite impulse filters
of kernel size 3 × 3 and stride 1 × 1, with rectified linear unit
(ReLU) activation, to extract features using the input represen-
tation.

Max-pooling layer. We apply a max-pooling layer of size
of 5 × 1 to decrease the frame rate of the signal and keep the
most activated features.

Convolution layer. As in our first convolution layer, the
kernel size is 3 × 3 and stride 1 × 1, with ReLU activation,
to extract a higher-level of abstraction.

Max-pooling. We apply max-pooling of a size of 2 to re-
duce the dimensionality of the features. In contrast to the first
max-pooling layer where we use a large window, in this layer
we use a smaller window size.

Convolution layer. We utilise 2D convolutions of kernel
size 3×3 and stride 1×1, with ReLU activation and 128 filters.

Max-pooling layer. Our final feature representation is the
output of a max-pooling layer of kernel size 2 × 1 with stride
1× 1 for the final output.

Batch normalisation. Due to the high number of param-
eters our model contains, we use batch normalisation [27] as
regularisation after each convolution layer.

Recurrent neural network. Finally, 2-GRU layers are used
before the final prediction with 512 hidden units.
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5. Experiments
5.1. Experimental Setup

To train the models, we utilised the Adam optimisation
method [28], and a fixed learning rate of 10−6 throughout all
experiments. We used a mini-batch of 25 samples and a gra-
dient norm clipping of 5.0. As discussed earlier, our proposed
model uses batch normalisation [27] to regularise our network,
such that it will not overfit. To train our models, we use binary
cross-entropy loss. Our input representation is computed using
a Hann window with the length of the FFT to be 2 048, and a
hop length of 512, after subtracting the mean of the raw wave-
form with 16 kHz sampling rate. Finally, we apply data aug-
mentation to train the models by randomly creating 5 sec long
windows with a gibbon call.

5.2. Machine Learning Approaches

We compare our method with End2You (Sec. 5.2.1) and
openXBOW (Sec. 5.2.2) which are comparably new toolk-
its used in the literature such as in the Interspeech Compu-
tational Paralinguistics Challenge series, and produce com-
petitive results in several domains such as emotion recogni-
tion [19, 29, 30, 31], and others [32, 33, 34].

5.2.1. End2You

End2You is an open-source toolkit implemented in Python
which provides capabilities to train and evaluate audio (and
other) models in an end-to-end manner, i. e., using raw input.
The audio processing model is comprised of two blocks, each
one containing a convolution with 40 filters and a max-pooling
operation, where the first block is applied in the time domain
with size and stride 2, and the second block is applied to the
feature maps with size and stride 10. On top of the convolu-
tion network, a 2-layer GRU block with 512 units is applied
such that the temporal information in the data can be consid-
ered. To train the model, we used the binary cross-entropy loss.
We performed hyper-parameter optimisation and we show the
best results obtained on the validation set.

5.2.2. openXBOW

openXBOW is an open-source crossmodel bag-of-words
toolkit, written in Java, to extract a bag of words model from
the low-level descriptor (LLD) features (e. g. MFCC). In par-
ticular, each LLD feature vector is treated as a point in a
hyper-dimensional space. Then, a codebook is extracted ei-
ther through k-means clustering or random sampling. LLD vec-
tors can be quantised to this codebook as ‘audio-words’ and the
count of these audio-words across frames is used to create a
bag-of-words representation. For our purposes, we use openS-
mile [35, 34, 33] and its pre-defined ComParE 2010 feature set
as LLD features, hence fostering reproducibility. We exper-
imented with several classifiers, namely, Naive Bayes, linear
Support Vector Machines (SVMs), Random Forest, AdaBoost,
and Nearest Neighbour. Basic hyper-parameter optimisation
was performed for all classifiers. We found that Random Forest
provides the best results on the validation set.

5.3. Results

We compare our proposed model with openSMILE plus
openXBOW and End2You on the created dataset. To evaluate
the model’s performance, we employ the frequently used metric

UAR, i. e., the sum of classwise recall divided by the number of
classes, for audio analysis.

Results are depicted in Table 1. Our model outperforms the
other two on both the validation and test sets. For the test set,
our model outperforms End2You with 13 % absolute value and
openXBOW with 9 % absolute value. The results are significant
with a level of significance of 0.05 in a one-sided z-test. Finally,
we should note that both End2You and OpenXBOW produce
highly generalisable models, but so does our model with high
validation and test scores.

The high performance of our approach shows the potential
for machine learning algorithms to transform ecological mon-
itoring, even in dynamic and biodiverse environments. In par-
ticular, our method can reduce human data processing times by
filtering out data unlikely to contain vocalisations or by sorting
clips using prediction confidence to quickly confirm occupancy
at a lower temporal resolution.

Table 1: Results (w. r. t. UAR) on the validation and test sets
for End2You, openSMILE + openXBOW, and the proposed ap-
proach.

UAR [%] Validation Test

End2You 78.5 80.6
OpenXBOW 82.7 84.8
Proposed 97.1 93.3

6. Conclusion
We proposed applying recent advances in intelligent audio anal-
ysis to help automate autonomous recording units’ data process-
ing in the wild. While a larger variety of labelled data is needed
to verify performance across recordings and animal species, the
suggested model’s performance demonstrates the feasibility of
using deep learning for continuous primate occupancy moni-
toring in a challenging real-world scenario. Furthermore, the
audio annotation and extraction pipeline developed can be used
to train bespoke call detection systems for other species and
study sites. This paper demonstrates the importance of integrat-
ing ecological motivations with computer science perspectives
throughout dataset curation, model training, and testing phases
of building a machine learning tool.

For future work, we plan to incorporate additional species
in our workflow and train our model to simultaneously detect
and predict animal sounds. To ensure reproducibility and com-
parability, we further aim to release the data within a gibbon call
detection Interspeech challenge event. Lastly, we intend to use
transfer learning methods, which have been used for numerous
audio processing applications and can be helpful when using
small datasets. In particular, we will try to apply the image fea-
ture extraction abilities of a model like VGGNet to spectrogram
features, and then feed those features to recurrent components.
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