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Abstract

Acoustic soundscapes can be made up of background sound

events and foreground sound events. Many times, either the

background (or the foreground) may provide useful cues in dis-

criminating one soundscape from another. A part of the back-

ground or a part of the foreground can be suppressed by us-

ing subspace projections. These projections can be learnt by

utilising the framework of robust principal component analy-

sis. In this work, audio signals are represented as embeddings

from a convolutional neural network, and meta-embeddings are

derived using an attention mechanism. This representation en-

ables the use of class-specific projections for effective suppres-

sion, leading to good discrimination. Our experimental evalu-

ation demonstrates the effectiveness of the method on standard

datasets for acoustic scene classification.

Index Terms: Acoustic scene classification, robust principal

component analysis, subspace projection, attention.

1. Introduction

In many real-world applications, data under study can be seen

as the superposition of occasional events (sparse outliers) and

constant or slow-changing background. One such familiar ap-

plication is surveillance video sequence, where a slow-changing

background scene is interspaced by movement of one or more

people or objects. Separating or decomposing the video data

into the sparse component and background component may be

useful in tasks like activity detection. Robust principal com-

ponent analysis (RPCA) is a technique which performs such a

separation [1] [2]. RPCA decomposes data matrix M in to L
and S:

M = L+ S,

where low-rank matrix L corresponds to the slow-changing

background and sparse matrix S corresponds to the outliers.

Based on the application, the object of interest can be either

the sparse component or the low-rank component, or both.

The analysis of acoustic scenes (or soundscapes) is one

such application, where data can be seen as the superposition

of sparse and low-rank components. For example, in the sound-

scape inside a bus, there is a constant engine sound (the low-

rank component), interspaced by sounds like people talking or

the door opening (sparse component). It may be sometimes

useful to separate the sparse foreground events (people talking)

from the constant or slow-changing background (the sound of

engine) for analysing the soundscape.

Furthermore, in many situations, the foreground events may

be crucial in discriminating soundscapes with similar back-

grounds. Likewise, the background may be crucial in discrim-

inating soundscapes with similar foreground events. Moreover,

it may be helpful to suppress a part of the foreground or back-

ground, instead of completely removing them. Suppressing a

part of foreground or background can be done by subspace pro-

jections like nuisance attribute projection (NAP) [3], where ei-

ther the foreground or the background can be treated as the nui-

sance (or unwanted) attribute. The unwanted variations can be

removed from the data vector x by applying the below transfor-

mation:

x̃ = x−BBTx = (I −BBT )x (1)

Here x̃ denotes the nuisance-removed vector, B is a basis matrix

whose columns span the nuisance space, and I is the identity

matrix.

Figure 1: Various t-SNE plots of embeddings. Top figure: with-

out using explicit class information. Middle: Using explicit

class information and class-specific basis to remove part of the

background. Bottom: Without using class information and by

using proposed meta-embeddings driven by attention. Each

color corresponds to one class.

Due to the unpredictability of real-life soundscapes, it is

difficult to have a universal nuisance basis matrix B which will

work for all soundscapes. In practice, a class-specific basis 1

matrix is more suitable for applying NAP. This is illustrated in

Figure 1 with the help of 2-D t-SNE plots of audio embeddings.

The top plot in Figure 1 shows features from 15 acoustic sound-

scapes. It can be observed that there is a lot of overlap between

the classes. The middle plot shows the audio embeddings after

suppressing part of the background using the respective class-

specific basis matrices. It can be seen that, in this case, the em-

beddings are well separated. The only issue with this approach

1Class-specific basis means that, given data of a class, the fore-
ground basis Bf and the background basis Bb for NAP are constructed
with prior knowledge of the class.
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is that, during deployment, we do not know the true class, and

hence we do not know which basis matrix to use. This paper

addresses this issue.

In this work, all audio signals are represented as embed-

dings from a deep convolutional neural network (CNN). Let the

total number of classes under consideration be C. We propose a

new framework for RPCA-based subspace projection, where in,

an audio embedding is projected into C separate subspaces us-

ing class-specific bases. We adopt the attention-based model in

[4] for combining these C projected embeddings, correspond-

ing to a single audio sample, into one embedding. This attention

model is trained to produce an embedding which will be sim-

ilar to the one using it’s class-specific basis. In other words,

we bypass the problem of explicitly choosing the class-specific

basis by training the network to come up with an embedding

similar to the one produced by the class-specific basis, without

knowledge of the class label.

We term the learned embedding as meta-embedding. The

word meta-embedding is borrowed from natural language pro-

cessing (NLP) literature, which means embedding learned by

combining different embedding sets [5]. Later a support vec-

tor machine (SVM) is trained using these meta-embeddings for

acoustic scene classification (ASC) task. The third plot in Fig-

ure 1 shows the t-SNE plot with meta-embeddings obtained

with the proposed attention model. From the plot we can ob-

serve the classes are well separated, similar to the plot which

utilized the class-specific projection. This endorses our belief

in using the attention model to produce embeddings similar to

the class-specific projection embeddings.

Research in acoustic scene classification has been spurred

by the DCASE challenges [6]. Several state-of-the-art systems

for ASC can be found in the challenge entries, which include

[7], [8] and [9]. In the literature, many studies have addressed

the ASC task by extracting rich features. Mainly due the suc-

cess of CNNs in computer vision, CNN based architectures are

adopted in ASC as well. Such approaches include the use of

time-frequency representation of an audio signal such as scalo-

gram [10], constant-Q transform spectrogram [8] [11] and log-

mel spectrogram [12] [7] treated as input images. CNN based

models are then trained to extract rich features for downstream

classification. Some studies applied source separation meth-

ods to extract discriminative features, though the explicit low-

rank and sparse representation as in RPCA is not applied. Mun

et al.[13] proposed to extract discriminative features from the

intermediate layer of an recurrent neural network (RNN) for

ASC, where the RNN model was trained for source separa-

tion. Han et al.[9] proposed to use spectrograms from binaural

audio, harmonic-percussive source separation and background

subtraction to train an ensemble neural network to achieve bet-

ter classification accuracy. In this paper, we explore RPCA

based decomposition with meta-embeddings as rich discrimi-

native features for SVMs.

2. Robust principal component analysis

Principle component analysis (PCA) is a technique widely used

in data analysis mostly for dimensionality reduction and denois-

ing. PCA can be solved by performing singular value decompo-

sition (SVD) on the given data matrix M . But SVD is sensitive

to outliers and performs poorly when data is corrupted with out-

liers. In real world, data corruption is quite common and due to

which, PCA tends to find the directions which are far from the

true directions. Robust PCA (RPCA) overcomes some of these

limitations with reasonable assumptions about the data [1]. A

Figure 2: RPCA based foreground and background separation.

The phase of original audio signal is used to reconstruct fore-

ground and background signals [14].

well-used formulation of RPCA is the problem of decompos-

ing the data matrix M into the sum of a low-rank matrix L and

sparse matrix S [2]. By solving the following convex problem

we can recover the low-rank matrix:

minimize ||L||∗ + λ||S||1, (2)

subject to L+ S = M, (3)

where M,L and S ∈ R
n1×n2, λ > 0 is a free parameter,

|| · ||∗ denotes the nuclear norm, i.e., sum of singular values

and || · ||1 denotes the l1-norm. We use the procedure proposed

by Huang et al.[14] to separate singing voice from monaural

recordings, including details on how to solve the above convex

problem and the choice of the λ value.

Fig 2 illustrates the procedure of RPCA applied to an au-

dio signal. The spectrogram representation of the audio signal

is treated as data matrix M . This data matrix M is approxi-

mated as L+ S, where L and S represents the background and

the foreground spectrograms respectively. The phase of origi-

nal signal and inverse short-time Fourier transform are used to

reconstruct the background and foreground audio signals from

L and S.

3. Attention

Attention models were first proposed for machine translation

[15] [16], where the words in a sentence are attended differ-

ently. Attention models are designed to give more relevance to

important words and ignore irrelevant words. A variant of the

attention model is proposed by Kiela et al [5] in which, deci-

sion of picking a word embedding for a given setting is made

by a neural network. This learned word embedding is known

as dynamic meta-embedding. Kong et al [4] applied attention

mechanism for audio tagging and sound event detection with

weakly labelled data. They showed that attention models can

be used for decision making in a multiple instance learning set-

ting. Also, they proposed decision-level as well as feature-level

attention neural networks for audio tagging. Our work is con-

ceptually similar to dynamic meta-embedding [5], where in, we

wish the model to select the suitable embeddings.

4. The proposed method

Let Di = {xi1, xi2, xi3, ..., xin} be n training samples for

class i, i ∈ {1, 2, ..., C}. Let Df
i = {xf

i1, x
f
i2, x

f
i3, ..., x

f
in}

be n foreground training samples for class i. Let Db
i =

{xb
i1, x

b
i2, x

b
i3, ..., x

b
in} be n background training samples for

class i. All these samples xik, x
f

ik, x
b
ik ∈ R

d are the feature

vectors extracted from the last layer of the CNN L3-Net [17]
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Figure 3: Class-specific background and foreground basis con-

struction for NAP, where i specifies the class.

[18]. xik is derived from the input audio sample, xf

ik and xb
ik

are derived after performing RPCA on the input audio sample.

Let Bf
i , B

b
i ∈ R

d×d be the foreground and background

NAP bases corresponding to class i respectively. These class-

specific bases are computed by performing PCA on foreground

and background training samples belonging to class i, i.e., Df
i

and Db
i respectively as shown in Figure 3.

The proposed framework is illustrated in Figure 4. First,

features are extracted from the given audio sample, let this be

represented by x. For the moment, let us consider the fore-

ground sound events as nuisance attributes. In this case, NAP is

performed on x as shown below.

x̃b
i = x–Bf

i B
f
i
Tx ∀i ∈ {1, 2, .., C} (4)

X̃b = {x̃b
1, x̃

b
2, .., x̃

b
C} (5)

Here X̃b ∈ R
d×C is the set of vectors that represents fore-

ground removed representation for a single audio sample. Sim-

ilarly, if we consider background sound events as nuisance at-

tributes, then NAP is performed on x as shown below.

x̃f
i = x–Bb

iB
b
i
Tx ∀i ∈ {1, 2, .., C} (6)

X̃f = {x̃f
1
, x̃f

2
, .., x̃f

C} (7)

Here X̃f ∈ R
d×C is the set of vectors that represents back-

ground removed representation for a single audio sample. In

both the representations, each sample is projected in to C dif-

ferent subspaces using class-specific bases.

We adopt the feature-level attention in [4] for learning

meta-embedding, whose model architecture is shown in Figure

5. This neural network has one input layer of length d and out-

put layer of length C (d is the dimension of embeddings and C
is the number of classes), and 2 parallel fully-connected hidden

layers of length l, one for attention function p() and another for

learning better representations u().

We denote the input to the attention model as X̃ ∈ R
d×C .

If we are considering the background as the nuisance attribute,

then X̃ = X̃f otherwise X̃ = X̃b. Let x̃ ∈ R
d be a column

vector in X̃ i.e., x̃ ∈ X̃ . The function u(x̃) can be modelled as

u(x̃) = σ(Wx̃+ b) (8)

where u(x̃) ∈ R
l, σ can be any linear or non-linear function to

increase the representation ability of the model. The attention

function p(x̃) can be modelled as

v(x̃) = φ(Ux̃+ c), (9)

Figure 4: Proposed framework to suppress class-specific back-

ground using NAP, where i specifies the class. A self-attention

mechanism is used to derive a final embedding from these class-

specific embeddings for classification. Same framework is used

to suppress class-specific foreground as well by performing

NAP with Bf
i instead of Bb

i , which gives x̃b
i instead of x̃f

i .

Figure 5: Self-attention model architecture. The embeddings

extracted post fusion are used to train the SVM classifier.

p(x̃)j = v(x̃)j/Σx̃∈X̃
v(x̃)j (10)

where φ is the sigmoid function to view p(x̃)j as a probability

and p(x̃) ∈ R
l, v(x̃) ∈ R

l and j represents the index term.

Equation 10 can be interpreted as softmax over v(X̃) along the

dimension C, where v(X̃) ∈ R
l×C and x̃ ∈ X̃ . Equation 10 is

repeated for each component of p(x̃). The attention aggregation

of u(x̃) and p(x̃) produces a meta-embedding by combining C
embeddings in to a single vector as:

h =
∑

x̃∈X̃

p(x̃)⊙ u(x̃) (11)

where h ∈ R
l is the meta-embedding, ⊙ represents element-

wise product. This model is trained for classification using

Adam optimizer and categorical cross-entropy loss function.

Once this model is trained, features are extracted from the layer

before the output, which gives meta-embedding h.

The effect of applying the attention module is illustrated

in Figure 6. The top row of Figure 6 shows the bivariate ker-

nel density estimate contours for two acoustic scenes “grocery

store” and “metro station” using two randomly chosen dimen-

sions from 234 training audio samples. We can clearly see that

features from these two classes have high overlap. After obtain-

ing the meta-embedding after attention, the overlap is consid-

erably reduced. This is also the case for another two acoustic

scenes “home” and “office”, shown in bottom row of Figure 6.
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Figure 6: Illustration of bivariate kernel density estimate with 2

randomly picked features. Top row: scenes “grocery store” and

“metro station” before and after applying attention. Bottom

row: scenes “home” and “office” before and after applying

attention.

5. Experimental evaluation

In this section, we describe the experiments used to evaluate the

proposed framework for acoustic scene classification. The pri-

mary purpose of the experiments is to investigate the effect of

the suppression of the foreground and background. The sup-

pression is achieved using meta-embeddings, and the amount

of suppression is controlled by the dimension of the subspace

during NAP.

For comparison, we use a baseline system which uses fea-

tures from the input audio sample (considered together with

foreground and background). These are embeddings from L3-

Net without applying NAP or attention. We also compare our

method with systems reported in [7] and [8] on the same data.

The system in [7] is an ensemble of different subsystems, each

trained with different features like MFCC features, audio seg-

ment level feature vectors, mel and log scaled filter banks. The

system in [8] is a fusion of multiple features from multiple

CNNs trained on various spectral representations of the audio.

Datasets: We evaluate the proposed framework using two

acoustic scene classification (ASC) datasets. a) TUT Acoustic

Scenes 2017 dataset (DCASE 2017 task 1) [6]. The dataset

has a development set and an evaluation set corresponding to

15 acoustic scenes. b) LITIS Rouen Audio scene dataset (3026

samples) comprising of 19 acoustic scene classes [19].

Feature extraction: We use Openl3 python library to ex-

tract deep audio embeddings from an audio sample [17] [18].

The extracted embedding is then averaged to get a 6144 × 1
vector (d = 6144).

Learning class-specific bases for NAP: We utilize the

Matlab implementation of RPCA in [14] to separate foreground

and background from an audio sample (see Figure 2). Post

separation, features are extracted from the foreground as well

as background samples using Openl3 library as discussed ear-

lier. Then, PCA is performed on the class-specific foreground

and background samples to get class-specific nuisance basis for

the foreground Bf
i and background Bb

i respectively as shown

the Figure 3. We can control the amount of foreground and

background to be removed by varying the number of principal

components used as columns in Bf
i and Bb

i respectively. In all

cases, the classifier is a simple one against one SVM with linear

kernel.

Results and discussions: The first orange bar in Figure

7(a), (b) shows the results of the baseline system with develop-

ment and evaluation datasets respectively. Figure 7 also shows

the performance of the proposed attention-based systems, when

Figure 7: Classification results after suppression. The subplots

(a) and (b) gives results for DCASE development and evaluation

dataset: baseline, after suppressing foreground, after suppress-

ing background and results from [7], [8]. The subplot (c) gives

the results for LITIS Rouen dataset: baseline, after suppressing

the foreground, after suppressing the background. The number

under NAP specifies number of basis components.

foreground is suppressed (NAP-F) and when the background

is suppressed (NAP-B), on the DCASE development dataset.

Foreground suppression uses 200 columns for the NAP basis,

and background suppression uses 50 columns, with d = 6144

and l = 256. We observe 2% and 3.8% increase in classifica-

tion accuracy from the baseline, when the foreground and the

background are treated as nuisance attributes respectively.

On the DCASE evaluation dataset, we observe 1.79% and

3.52% increase in classification accuracy from the baseline

when foreground and background is treated as nuisance at-

tributes respectively. The number of basis vectors used are 250

for the foreground and 5 for the background. For the evalua-

tion dataset, we treated the entire development dataset as train-

ing data to find the class-specific basis, as well as to train the

attention model and the SVM. Figure 7 also shows that the pro-

posed method is comparable to the results in [7] and [8], which

are more complex ensemble-based methods, and are among the

top performers in the DCASE 2017 challenge. The proposed

method uses a relatively simple linear SVM as the classifier.

The suppression of the foreground and the background provides

better discrimination of confusing events across various classes.

The further combination of foreground suppression and back-

ground suppression did not result in tangible benefits.

On the LITIS Rouen dataset, when 80% of data is used

for the training and 20% for the testing, we observe 2.31%

and 3.63% increase in classification accuracy from the base-

line when foreground and background is treated as nuisance

attributes respectively. The number of basis vectors used are

250 and 50 for the foreground and the background respectively.

The relative increase in classification accuracy from the base-

line model is similar with both the datasets.

6. Conclusion

In this paper, we showed that suppressing a part of the fore-

ground or background is helpful in classifying acoustic sound-

scapes. The framework of RPCA helps in determining the sub-

spaces, the projection into which, makes the suppression pos-

sible. By using meta-embeddings derived from an attention

mechanism, class-specific projections can be utilized for effec-

tive suppression, which in turn helps in better discrimination

of the soundscapes. Our experiments show that the both the

background and the foreground has useful information for this

purpose.
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