
Acoustic Scene Analysis with Multi-head Attention Networks

Abstract

Acoustic Scene Classification (ASC) is a challenging task, as

a single scene may involve multiple events that contain com-

plex sound patterns. For example, a cooking scene may con-

tain several sound sources including silverware clinking, chop-

ping, frying, etc. What complicates ASC more is that classes of

different activities could have overlapping sounds patterns (e.g.

both cooking and dishwashing could have silverware clinking

sound). In this paper, we propose a multi-head attention net-

work to model the complex temporal input structures for ASC.

The proposed network takes the audio’s time-frequency repre-

sentation as input, and it leverages standard VGG plus LSTM

layers to extract high-level feature representation. Further more,

it applies multiple attention heads to summarize various pat-

terns of sound events into fixed dimensional representation, for

the purpose of final scene classification. The whole network

is trained in an end-to-end fashion with backpropagation. Ex-

perimental results confirm that our model discovers meaningful

sound patterns through the attention mechanism, without using

explicit supervision in the alignment. We evaluated our pro-

posed model using DCASE 2018 Task 5 dataset, and achieved

competitive performance on par with previous winner’s results.

Keywords: acoustic scene analysis, unsupervised alignment

learning, multi-head attention

1. Introduction

High level semantic understanding of an audio stream is a fun-

damental problem in machine intelligence. Being able to in-

fer from sound patterns what events are occuring and what

is the surrounding environment has potential applications in

a wide range of fields such as public safety [1], ecological

study [2], and assisted living [3]. Recently, the tasks of au-

dio event detection (AED) and acoustic scene analysis (ASC)

have gained increasing popularity, due to the availability of

large scale datasets [4] and commonly used benchmarks [5, 6].

We observe that, deep learning architectures such as convolu-

tional neural networks [7, 8] and long short-term memory net-

works [9] and their variants have contributed significantly to the

success of many approaches to the tasks.

Although the common deep learning architectures can work

well for fully supervised tasks, challenges arise when the task

is only weakly labeled, which is often the case in practice. As

an example, a cooking scene may contain several sound events

including silverware clanking, chopping, frying, and perhaps

other human activities (such as walking and talking); know-

ing the existence of the smaller events (with short temporal

duration) clearly helps inferring the abstract scene class. To

train a ASC system, it is challeging to collect datasets with

fine-grained event labels: annotators may quickly categorize
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the whole scene correctly, but it would be laborious (and also

expensive) for them to exhaustively identify the smaller sound

events and to pinpoint their onset/offset times. A more practi-

cal approach is to collect sufficient amount of recordings with

only scene class, and develop models which exploit the struc-

ture that a scene typically consists of multiple smaller events,

and perform recording-level inference based on the aggregation

of evidence at the event level, with supervision only at the scene

level. Due to both the challenges and opportunities, weakly su-

pervised learning has been a continual scheme in this area.

In this paper, we propose a multi-head attention network

for ASC, which implements the abovementioned intuitions of

hierarchical representation and compositional inference. Our

model applies multiple attention heads to frame level repre-

sentations of the input recording, where each head has a hid-

den event in mind, and attends to relevent frames to extract a

recording-level features; the features from all attention heads

are then pooled together, as the final representation of the entire

recording for scene classification. Although we only receive su-

pervision at the recording level, experimental results show that

our model discovers meaningful sound patterns through the at-

tention mechanism, and the soft alignment provided by the at-

tention heads encode high-quality time information. In the rest

of this paper, we give detailed formulation of our method in

Sec. 2, discuss related work in Sec. 3, present experimental re-

sults in Sec. 4 and qualitative analysis of the attentions in Sec. 5,

and conclude in Sec. 6.

2. Multi-head attention for ASC

Our task is to associate each audio clip with a scene class. The

scene can be a high level, abstract concept which consist of var-

ious smaller events. For example, in a typical “cooking” scene,

we expect to hear events like cook-ware, cutting, dishwashing,

and human activity sounds like walking and talking. In another

scene “working”, we could hear events such as keyboard typing

and mouse clicks, as well as paper scratching.

In order to categorize the overall scene, it can be helpful to

detect the existence of such smaller events and to analyze their

co-occurrence. However, it is very costly to pre-define the set

of smaller events and have human annotate their occurrence in

audio clips. In this section, we propose a method for automati-

cally detecting the existence of meaningful events and locating

their appearances in time (alignment) for scene classification.

Let an input utterance be X = [x1, . . . ,xT ′ ] where xt ∈
R

d contains the features for the tth audio frame, and T ′ is the

total number of frames. We apply deep convolutional networks

followed by bi-directional LSTMs to extract high-level features

that contain rich context information from the input (see Sec-

tion 4.2 for details). Let the output of this feature extraction net-

works (denoted by f ) be f(X) = [h1, . . . ,hT ] where ht ∈ R
p

and T ≤ T ′ due to subsampling in the time axis.
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For each input sequence, we consider a set of M smaller

events, where M is a hyper-parameter to be tuned by cross-

validation. Let the vectorial representation of the ith event be

v
i ∈ R

p, and write representations of all events collectively as

V =
{

v
i
}

i=1,...,M
. We compute the similarity between the

ht sequence and v
i, followed by exponentiation and normal-

ization, to obtain the “attention scores” for event i:

ai
t = exp(h⊤

t v
i/σ)/

T
∑

t′=1

exp(h⊤

t′v
i/σ), for t = 1, . . . , T,

where σ > 0 is a hyper-parameter that controls the sharpness

of the soft alignment (the smaller the σ is, the more peaked

the attention scores are). The nonnegative attention scores
{

ai
t

}

t=1,...,T
satisfy

∑T

t=1
ai
t = 1, and highlight the most rele-

vant frames (for event i) from f(X), while pushing the affinity

of others frames close to zero. We then summarize the feature

sequence into a fixed dimensional vector

s
i =

T
∑

t=1

ai
tht ∈ R

p, i = 1, . . . ,M

for each event. Finally, we concatenate all M events’ represen-

tations to obtain

s = [s1; . . . ; sM ] ∈ R
Mp,

and use it as the final feature for the entire utterance.

For N -class scene classification, we apply a feed-forward

network g with a final softmax layer to the utterance represen-

tation s. with weights W ∈ R
N×Mp at the end, to get predic-

tions

[P (y = 1|X), . . . , P (y = N |X)] = softmax (g(s)) .

Given a training set of (X, y) pairs, we jointly learn parameters

in feature extraction network f , event representations V, and

classification network g using the cross-entropy loss.

The attention mechanism is widely used in speech recogni-

tion [10, 11] and natural language processing [12], and multi-

head self-attention has been proposed in [13]. We have bor-

rowed the same intuition of learn-able, soft alignment from

these prior work for detecting events in an unsupervised fashion,

and our use of multiple attention heads is motivated by the com-

plex nature of scenes—each scene may contain several distinc-

tive events. In related settings, a few recent work [14, 15, 16]

formulated the weakly supervised event detection problem

(given only the utterance label, train a system to infer both ut-

terance label and time alignment) as a multiple instance learn-

ing problem, and proposed different pooling strategies to ag-

gregate the per-instance (or per-segment) hypothesis to form an

utterance level prediction, on top of which supervision is im-

posed. This aggregation process resembles attention, albeit at

the prediction score level for specific target event, rather than

at the representation level. A similar attention mechanism to

ours was used for rare event detection in [17], where the at-

tention scores receives supervision from the onset/offset time

provided by their task (Challenge 2 of DCASE 2017 [18]). In

contrast, we do not have any supervision in this work for the

frame-wise alignment. Instead, we rely on the model’s struc-

tural constraint—the multi-head attention mechanism—to at-

tend to multiple relevant snippets and combine them for clas-

sification. To encourage the model to discover diverse events,

we apply dropout [19] throughout the model (and in particular

Table 1: Class distributions with number of training samples

and recording sessions.

Activity #10s seg # sessions

Absence (nobody in room) 18860 42

Cooking 5124 13

Dishwashing 1424 10

Eating 2308 13

Other (no relevant activity) 2060 118

Social activity (visit, phone call) 4944 21

Vacuum cleaning 972 9

Watching TV 18648 9

Working (typing, mouse click, ...) 18644 33

Total 72984 268

on s) to prevent the v
i’s from co-adaptation. As we will see

in the empirical analysis, our model automatically discovers

events types that are semantically meaningful, and are highly

correlated to the scene classes.

3. Related work

Here we briefly describe a few previous approaches on DCASE

2018 Task 5, which we will use in the experiments. The baseline

system provided by the organizer [20] was based on a 1-D CNN

model applied to input Mel-spectrogram features extracted from

the original 10-second clips. They treated each of the 4 channels

of the audio clip as one independent data point during training,

and this strategy was adopted by most of the teams. Among

the top winning teams of the challenge, [21] similarly adopted a

CNN-based architecture, except that they applied 2D convolu-

tions along both the time and frequency dimension, which gave

significant improvement over the baseline results. [22] applied

heavy feature engineering and pre-processing techniques, such

as blind dereverberation, blind source separation, and noise re-

duction, as their ‘Front-End Modules’, which can potentially

be useful to our model as well. [23] applied sub-band convolu-

tions in their architecture, and performed frame-wise prediction

of scene label, with frame targets generated heuristically based

on energy. [24] learned one shared network from two task—

scene classification and regression, where the regression task

is to predict pre-computed single-channel representations from

multi-channel input data, and showed that the regression task

helps improve classification performance.

4. Experimental results

We demonstrate the proposed method on the task 5 of DCASE

2018 challenge [25], an acoustic scene classification task de-

rived from the SINS dataset [26]. In this dataset, each input

audio clip is 10 seconds long, consisting of four acoustic chan-

nels with the sampling rate of 16 kHz.

We ignore the correlation between different channels, and

treat the data from each channel as independent for training, as

is done in previous work [22]; this yields a 4x augmentation of

the training set size from 73K to 292K. During inference, for

each audio clip, we obtain the predictions for each channel, and

average the four prediction scores for the final classification.

4.1. Data augmentation

Proper data augmentation is important for our task, as the class

distribution is very skewed, as shown in Table 1: the small-

est class Vacuum cleaning contains only 972 training samples,
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Table 2: Configuration of the feature extraction network in pro-

posed model. Note that all Conv layers below contain batch

normalization [27] and ReLU activation.

layer kernel size stride # filters data shape

Input (64, 1250)

Conv 3x3 1x1 64

Conv 3x3 1x1 64

MaxPool 2x2 2x2 (32, 625, 64)

Conv 3x3 1x1 128

Conv 3x3 1x1 128

MaxPool 2x2 2x2 (16, 312, 128)

Conv 3x3 1x1 256

Conv 3x3 1x1 256

Conv 3x3 1x1 256

MaxPool 2x2 2x2 (8, 156, 256)

Conv 3x3 1x1 512

Conv 3x3 1x1 512

Conv 3x3 1x1 512

MaxPool 2x1 2x1 (4, 156, 512)

Conv 3x3 1x1 512

Conv 3x3 1x1 512

Conv 3x3 1x1 512

MaxPool 2x1 2x1 (2, 156, 512)
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Figure 1: Sensitivity analysis of hyperparameters (M,σ). Left:

dev performance for different M , with σ = 0.2. Right: dev

performance for different σ, with M = 9.

compared to the class Absence which contains 18, 860 train-

ing samples. Previously, [28] augmented the data by randomly

selecting two audio clips from the same class, evenly splitting

each into five 2-second segments, and randomly selecting 5 out

of the 10 segments, and concatenating them (in random order)

to form a new 10-second clip as augmented data for training.

We adopt a similar but simpler approach. We randomly se-

lect two clips within the same class, and from each clip, cut out

a continuous 5-second segment, whose starting time is sampled

from [0, 5] uniformly at random. The two 5-second segments

are concatenated to form a new 10-second clip for training.

Augmentation is done on-the-fly during training, and the model

won’t see the same augmented clip twice. We apply this aug-

mentation strategy to minority classes, namely cooking, dish-

washing, eating, other, social activity and vacuum cleaning.

4.2. Model architecture

For input features, we extract 64D log-Mel features from the

original single-channel audio data, with a window size of 16 ms

and hop size of 8 ms, followed by per-utterance mean subtrac-

tion. This gives us a 64x1250 feature matrix per utterance.

Our feature extraction network f starts with VGGish Con-

vNets layers [29], the details of which are given in Table 2. The

output of the last convolutional layer, with a receptive field of

64 ms in the time axis, is then fed to a bi-directional LSTM

Table 3: Final performance (macro F1 score) of our method.

Class Baseline [28]
Max

Pool

Ours

multi. attn.

Absence 0.877 0.937 0.896 0.927

Cooking 0.930 0.915 0.935 0.938

Dishwashing 0.772 0.865 0.829 0.866

Eating 0.812 0.870 0.849 0.880

Other 0.350 0.542 0.533 0.588

Social activity 0.966 0.979 0.977 0.979

Vacuum clean. 0.958 0.971 0.962 0.953

Watching TV 0.999 0.999 0.998 1.000

Working 0.814 0.887 0.822 0.884

Overall 0.831 0.884 0.867 0.891

attentions
atten_1
atten_2
atten_3
atten_4
atten_5
atten_6
atten_7
atten_8
atten_9

class labels
dishwashing
social_activity
eating
working
absence
watching_tv
other
cooking
vacuum_cleaner

Figure 2: 2D t-SNE visualization of ht’s selected by the atten-

tion heads. Top plot is colored according to attention head, and

bottom plot is colored according to utterance label.

layer [9] to extract abstract features with rich temporal infor-

mation. After that, we apply the multi-head attention module

described in Section 2. This attention module outputs M (e.g.,

9) fixed-dimension feature vectors, which are concatenated to

form the final feature vector s. The final classification network

g consists of 2 hidden layers with 512 ReLU units [30] each,

and a final softmax layer for 9-way classification.

4.3. Model training and selection

We adopt the same strategy as the baseline method [25] to define

an “epoch”: we down-sample each class (by random sampling)

to have same number of samples as the smallest class, going

through these samples once constitutes one epoch, and we re-

peat the down-sampling process before each epoch. For train-

ing, we used the Adam optimizer [31] with minibatches of 200
utterances and an initial learning rate of 0.001. Furthermore,

we reduce the learning rate by a factor of 0.5 every 7 epochs.
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Figure 3: Selection of 1-second segments selected by the atten-

tions heads.

We evaluate our model on the dev set every 5 epochs, and stop

training when the dev set performance, measured by macro F1

score (which is also the final metric used by the challenge), does

not improve further.

We tune the two hyperparameters in our method—the num-

ber of attention heads M and the attention shape parameter σ—

by grid search, based on dev set macro F1 score. In Fig. 1, we

show how the dev performance changes as we vary one hyper-

parameter while fixing the other. From the top plot, we observe

that for our task, the performance initially improves as we in-

crease the number of attention heads M , and there is a signifi-

cant gain when M reaches 9 (which coincidentally agrees with

the number of classes), and the performance stabilizes after that.

Therefore, we set M = 9 to balance performance and compu-

tational cost. The bottom plot shows the dev performance as we

vary σ, and σ = 0.2 is chosen for the final model. Observe

there exists a range of hyperparameters for which our model

works similarly well.

4.4. Results

We show our final results on the evaluation set in Table 3. For

comparison, we include also the results obtained by the baseline

model, and the method from the winner of the challenge [28];

the performance of our method (5th column) is on par with the

winner’s solution. For ablation study, we also provide the per-

formance of a variant of our method which, instead of using

multi-head attentions, performs global max pooling on f(X)
in the time axis, for computing the utterance representation.

This variant is denoted by “Max Pool” in Table 3 (4th column),

whose performance significantly degrades from that of our fi-

nal model. This demonstrates the effectiveness of the proposed

multi-head attention mechanism.

5. Attention visualizations

In this section, we try to interpret the attention heads. Since

the attention score ai
t measures the level of relevance of frame

feature ht to event i, for each audio clip in the dev set, we se-

lect the ht from the bi-directional LSTM outputs that is most

aligned with each event i (i.e., t = argmaxt′ ai
t′ ), and visu-

alize them with t-SNE [32] in 2D, as shown in Fig. 2. In the

top plot, we color each point according to their attention head,

whereas in the bottom plot, we visualize each point according

to the class ht comes from.

As we can see from the top plot, the ht’s show strong clus-

tering associations with each attention heads, implying that the

each attention head focuses more or less on a unique sound pat-

tern (event). From the bottom plot, we discover correlations be-

tween feature representations and class labels. Notably, the pat-

tern detected by attention 3 almost entirely belongs to watching

TV. But in general, the correlation between attention heads and

classes is not one-to-one. For example, head 5 also contributes

significantly to watching TV; on the other hand, some attention

heads (such as 4 and 9) cover multiple closely related classes.

To understand the events each head attends to, for each ht

selected by head i, we find the corresponding time stamp on

the original 10-second clip, and select a 1-second audio seg-

ment around the time stamp and listen to it. A sample of the

log-Mel features for these 1-second segments are provided in

Fig. 3. Each row refers to one attention head. We find each head

attends to one or a few distinctive sound patterns. For example,

attention heads 3 and 5 mainly detect human speech as well as

media speech and phone conversations; these events are associ-

ated with social activities and watching TV in Fig. 2. Attention

head 4 and 9, on the other hand, detect mostly percussive sounds

like keyboard typing and mouse clicking in working, and silver-

ware clanking and hitting sounds, shared by cooking, eating,

and dishing washing in Fig. 2.

6. Conclusion

In this paper, we have proposed a multi-head attention model,

which achieves competitive performance for acoustic scene

analysis on DCASE 2018 competition dataset. The multi-head

attention mechanism can discover meaningful representations

of distinctive sound events and locate their appearances in time,

given only class labels of the entire audio clip. Moreover, all

parameters in our model can be trained jointly, in an end-to-end

fashion. In future work, we may explore the proposed model

with even more complex scenes and larger number of classes,

and investigate different model architectures for ASC such as

multi-level attention [33] and neural architecture search [34].

7. Acknowledgements

The authors would like to thank Harsha Sundar for helpful dis-

cussions.

1194



8. References

[1] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “On acoustic
surveillance of hazardous situations,” in ICASSP, 2009.

[2] M. Lammers, R. Brainard, W. Au, T. Mooney, and K. Wong, “An
ecological acoustic recorder (ear) for long-term monitoring of bi-
ological and anthropogenic sounds on coral reefs and other marine
habitats,” The Journal of the Acoustical Society of America, 2008.

[3] J. Schroeder, S. Wabnik, P. Van Hengel, and S. Goetze, “Detection
and classification of acoustic events for in-home care,” in Ambient

assisted living. Springer, 2011.

[4] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in ICASSP, 2017.

[5] T. Virtanen, A. Mesaros, T. Heittola, A. Diment, B. Elizalde,
B. Raj, and E. Vincent, “Ieee aasp challenge on detection and clas-
sification of acoustic scenes and events,” 2017.

[6] A. Mesaros, T. Virtanen, T. Heittola, and F. C. et al, “Ieee aasp
challenge on detection and classification of acoustic scenes and
events,” 2018.

[7] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in NIPS, 2012.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, 1997.

[10] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in NIPS, 2015.

[11] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in ICASSP, 2016.

[12] D. B., K. C., and Y. B., “Neural machine translation by jointly
learning to align and translate,” in ICLR, 2015.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you
need,” in NIPS, 2017.

[14] Y. Wang, J. Li, and F. Metze, “Comparing the max and noisy-or
pooling functions in multiple instance learning for weakly super-
vised sequence learning tasks,” in Interspeech, 2018.

[15] B. McFee, J. Salamon, and J. P. Bello, “Adaptive pooling op-
erators for weakly labeled sound event detection,” CoRR, vol.
abs/1804.10070, 2018.

[16] Y. Wang, J. Li, and F. Metze, “A comparison of five multiple in-
stance learning pooling functions for sound event detection with
weak labeling,” in ICASSP, 2019.

[17] W. Wang, C. Kao, and C. Wang, “A simple model for detection of
rare sound events,” in Interspeech, 2018.

[18] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vin-
cent, B. Raj, and T. Virtanen, “DCASE 2017 challenge setup:
Tasks, datasets and baseline system,” in Proc. Detection and Clas-

sification of Acoustic Scenes and Events 2017 Workshop, 2017.

[19] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
2014.

[20] Q. Kong, I. Turab, X. Yong, W. Wang, and M. D. Plumbley,
“DCASE 2018 challenge baseline with convolutional neural net-
works,” DCASE2018 Challenge, Tech. Rep., 2018.

[21] T. Inoue, P. Vinayavekhin, S. Wang, D. Wood, N. Greco, and
R. Tachibana, “Domestic activities classification based on CNN
using shuffling and mixing data augmentation,” DCASE2018
Challenge, Tech. Rep., 2018.

[22] R. Tanabe, T. Endo, Y. Nikaido, T. Ichige, P. Nguyen,
Y. Kawaguchi, and K. Hamada, “Multichannel acoustic scene
classification by blind dereverberation, blind source separation,
data augmentation, and model ensembling,” DCASE 2018 Chal-

lenge, 2018.

[23] H. Liao, J. Huang, S. Lan, T. Lee, Y. Liu, and M. Bai, “DCASE
2018 task 5 challenge technical report: Sound event classification
by a deep neural network with attention and minimum variance
distortionless response enhancement,” DCASE2018 Challenge,
Tech. Rep., 2018.

[24] K. Nakadai and D. R. Onishi, “Partially-shared convolutional neu-
ral network for classification of multi-channel recorded audio sig-
nals,” DCASE2018 Challenge, Tech. Rep., 2018.

[25] G. Dekkers, L. Vuegen, T. van Waterschoot, B. Vanrumste, and
P. Karsmakers, “DCASE 2018 Challenge - Task 5: Monitoring of
domestic activities based on multi-channel acoustics,” Tech. Rep.,
2018.

[26] G. Dekkers, S. Lauwereins, B. Thoen, M. Adhana, H. Brouckxon,
T. van Waterschoot, B. Vanrumste, M. Verhelst, and P. Karsmak-
ers, “The SINS database for detection of daily activities in a home
environment using an acoustic sensor network,” in DCASE, 2017.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015.

[28] T. Inoue, P. Vinayavekhin, S. Wang, D. Wood, N. Greco, and
R. Tachibana, “Domestic activities classification based on cnn us-
ing shuffling and mixing data augmentation,” DCASE, 2018.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv:1409.1556, 2014.

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in ICML, 2010.

[31] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ICLR, 2014.

[32] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, 2008.

[33] C. Yu, K. S. Barsim, Q. Kong, and B. Yang, “Multi-level attention
model for weakly supervised audio classification,” in DCASE2018

Workshop on Detection and Classification of Acoustic Scenes and

Events, 2018.

[34] J. Li, C. Liang, B. Zhang, Z. Wang, F. Xiang, and X. Chu, “Neu-
ral architecture search on acoustic scene classification,” Dec. 30
2019, arXiv:1912.12825 [cs.SD].

1195


