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Abstract

Convolutional Neural Networks (CNNs) have been widely in-
vestigated on Acoustic Scene Classification (ASC). Where the
convolutional operation can extract useful semantic contents
from a local receptive field in the input spectrogram within cer-
tain Manhattan distance, i.e., the kernel size. Although stacking
multiple convolution layers can increase the range of the re-
ceptive field, without explicitly considering the temporal rela-
tions of different receptive fields, the increased range is limited
around the kernel. In this paper, we propose a 3D CNN for
ASC, named ATReSN-Net, which can capture temporal rela-
tions of different receptive fields from arbitrary time-frequency
locations by mapping the semantic features obtained from the
residual block into a semantic space. The ATReSN module has
two primary components: first, a k-NN-based grouper for gath-
ering a semantic neighborhood for each feature point in the fea-
ture maps. Second, an attentive pooling-based temporal rela-
tions aggregator for generating the temporal relations embed-
ding of each feature point and its neighborhood. Experiments
showed that our ATReSN-Net outperforms most of the state-of-
the-art CNN models. We shared our code at ATReSN-Net.
Index Terms: Acoustic scene classification, attentive pooling,
temporal relations, semantic neighborhood, ResNet.

1. Introduction

Acoustic Scene Classification (ASC) aims at classifying the
real-life audio recordings into the predefined acoustic scene
classes [1]. In the latest DCASE challenges [2, 3], the Con-
volutional Neural Network (CNN) based ASC methods have
achieved promising performances. The ensembles of CNNs
trained with multi-level features [4], and various classical CNN
models [9, 8], e.g., VGG [5], ResNet [6], and AcINet [7], were
utilized to deal with ASC. And the performance can be further
improved by exploiting the teacher-student learning [10] based
on the method in [4]. Followed by the SubSpectralNet [11],
which aims at capturing the local relations in the frequency do-
main using band-wise crops of the spectrograms, the factorized
CNN (FCNN) was proposed to learn the long-term ambient and
short-term patterns in the acoustic scenes [12]. And it had been
verified by the attention-based atrous CNN [13] that, a larger
receptive field (RF) is more effective than the local pooling in
learning time-frequency (T-F) representations.

These above works have extensively investigated the CNN-
based ASC models. However, the temporal relations between
different receptive fields (RFs) may not be considered explicitly.
Recently, in our previous work, the pyramidal temporal pooling
with discriminative mapping (DM-PTP) [14], we have verified
that capturing temporal relations of the high-level features ex-
tracted from a group of ordered T-F RFs via a CNN, indeed
benefits audio classification. However, the DM-PTP involves
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Audio sample “park-lisbon-1057-40079-a.wav” in DCASE 2019 ASC dataset

Time ‘Vehicle passing by

Figure 1: The short-term sound patterns with similar semantic
contents in real-life acoustic scenes.

solving an argmin optimization problem [17] when perform-
ing temporal pooling [15], thus the CNN and DM-PTP model
are trained separately. In this work, we attempt to capture the
temporal relations between different RFs of the spectrogram in
a more concise end-to-end framework, thus the temporal rela-
tions, CNN feature extractor, and classifier can be jointly opti-
mized.

The first concern is which RFs should be selected for learn-
ing temporal relations. Real-life acoustic scenes are usually ir-
regular and contain varieties of sound elements [16], the oc-
currences of the sound elements with similar semantic contents
could be either periodic or randomly repeating (e.g., Figure 1).
In [18], the nearest neighbor filter (NNF) [19] is used as the
front-end of a CNN model, however, it may be insufficient
to capture high-level temporal relations by directly grouping
neighborhood on the front-end raw features. More recently,
inspired by the PointNets [20, 21] based works, the Dynamic
graph CNN [22] and correspondence proposals net [23] for
computer vision tasks, we proposed the SeNoT-Net [24], which
concentrates on learning temporal relations of different T-F RFs
with similar semantic contents, i.e., semantic neighbors.

Results in [24] showed that, the performance of the CNN-
based ASC model can be significantly improved by captur-
ing the temporal relations of different feature points (i.e., T-F
units) in the feature maps obtained from the 3D convolutional
(Conv) block. However, for each feature point, the temporal
relations within its semantic neighborhood are simply aggre-
gated with a max/avg-pooling layer. As a hard aggregation, the
max/avg-pooling would inevitably lead to leakage of informa-
tion in a large RF. To better exploit the temporal relations in
the semantic neighborhood, in this work, we utilize the atten-
tion mechanism to aggregate the temporal relations that would
benefit the classification, and use a learnable MLP-based posi-
tion encoding method to make full use of the positional infor-
mation of the feature points. Then a 3D CNN-based network,
ATReSN-Net, which aims at capturing the high-level attentive
temporal relations of the feature points, and their semantic
neighborhoods from different RFs, is proposed. The key mod-
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ule, ATReSN, consists of two components: 1) a k-NN-based
semantic neighborhood grouper (SNG); 2) an attentive pooling-
based temporal relations aggregator (ATRA). There are three
major benefits by using this module in the CNN-based ASC
model: 1) the obtained model can capture temporal relations of
different RFs in arbitrary T-F locations by grouping neighbor-
hood in the semantic space; 2) the ATRA helps the model to
focus on those temporal relations that benefit the classification
most; 3) multi-scale relations can be incorporated by inserting
multiple ATReSNs in different layers of the network.

2. ATReSN-Net

The ATReSN-Net treats the 2D spectrogram of an audio sam-
ple as a 3D spectrogram sequence, which is formed by placing
multiple smaller T-F segments with full frequency bins of the
original spectrogram in temporal order. The 3D Conv is used
to extract feature maps for the input sequence. For capturing
temporal relations, the ATReSN first maps the feature points in
the feature maps into a semantic space. Then for each feature
point, the ATRA will obtain the temporal relations embedding
of its self-centered semantic neighborhood, which are grouped
by performing the k-NN-based SNG globally.

2.1. Semantic neighborhood grouping

In this work, we attempt to characterize an acoustic scene by
aggregating the knowledge from the sound elements with simi-
lar semantic contents, i.e., semantic neighborhood. For the 2D
Conv block, the local feature is extracted from a neighborhood
defined by the Manhattan distance, such neighborhood can be
easily grouped within a k£ X k square (here k is the kernel size),
due to the regular structured input. For our ATReSN, the neigh-
borhood is defined by the L2 or cosine based semantic similar-
ity, thus the input data is presented in an irregular form. Us-
ing the idea of our recent work [24], a k-NN-based grouper is
designed to find the top-k semantic neighbors for each feature
point in the feature maps obtained from the Conv block.

Specifically, given a Log Mel-Spectrogram of an audio
sample, we first transform the 2D spectrogram into a 3D se-
quence with N smaller segments along the time bin. Using
such sequence as input, a 3D Conv block with C' channels
can produce a set of feature maps, {X1,...,X;,...,Xn} with
X; € RFXTXC where F and T are the output sizes in terms
of the frequency and time bins, respectively. With these feature
maps, the processing steps of SNG can be described as follows:

1) Similarity matrix calculating. For each pair of feature
points, X; ;5 Xj,f;,t; € R from X; and X;, their seman-
tic similarity is calculated. Then a similarity matrix, M €
RNFTXNFT with each row storing all the semantic distances
for the corresponding center point, is obtained.

2) Semantic neighbors searching. To find the neighbors, a
k-NN algorithm is performed on each row of M, and the neigh-
bor position indexes are obtained by searching the position in-
dex table according to the row indexes of the top-k similarities
in M. With these position indexes, the semantic neighborhood
consisting of k neighbors for each feature point can be grouped.

2.2. Attentive temporal relations aggregation

As shown in Figure 2, the attentive temporal relations aggrega-
tor (ATRA) is performed on the neighborhood centered on each
feature point grouped by the SNG. It consists of two units: 1)
a pair-wise temporal relation encoder (PaTRE), 2) an attentive
pooling-based aggregator.
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2.2.1. Pair-wise temporal relation encoding

For each feature point and its k semantic neighbors, as well
as their position indexes, the PATRE unit aims at capturing the
temporal relation between the center point and each of its se-
mantic neighbor points. Since the semantic feature points are
extracted from different T-F receptive fields, to capture their
temporal relations, the encoder should be aware of their orig-
inal positions in the feature maps. And it had been verified in
[14] that the time indexes benefit the model for learning tem-
poral relations in the audio signals. Hence, in this work, the
feature points and their positional information are concatenated
to present to the PaTRE unit. Specifically, this unit includes the
following processing steps:

1) Augmented position encoding. To make full use of the
positional information, we encode the position indexes of the
center point and each of its k neighbors. For convenience, we
use X;, X, (s) € R G =1,..,NFTands = 1, ..., k) to denote
the ¢-th feature point and its semantic neighbor, respectively.
The feature point position encoding is defined as

Pi=7Piop,»®Pi—P;»)®Pi-p;l) (D

where p;,p,s) € R? are the normalized position indexes (e.g.,
p, =%, %, % ) of x; and x,(s), respectively, & denotes the
concatenation operation, ||-|| is the Euclidean distance between
two points, and v : R'® — R!® stands for a shared MLP that
generates the augmented positional embedding, p;. It had been
proved in [23, 25] that more robust local features can be ob-
tained by using the relative positional information. Hence, ex-
cept for the position indexes, p; also embeds the relative posi-
tion, which characterizes the displacement changes of two fea-
ture points in time and frequency domains. Especially, for the
time domain, there are two levels of displacement changes, i.e.,
the segment-level and point-level.

2) Temporal relation encoding. For each pair of the center
point, x;, and its semantic neighbor, x,(,), they are concate-
nated with their corresponding positional embedding, p;, then
presented to a shared MLP for the pair-wise temporal relation
encoding, which is defined as follows:

e;=f(x;i®x ;) ®p;7) 2

where e is the temporal relation embedding for x; and x,(,),
and f : R?2“+16 5 RY is the shared MLP with two hidden
layers. The number of units in each hidden layer depends on
the dimension of the center feature point, i.e., C//4 and C/2.
Since the weights of the MLPs in our PaTRE unit are shared,
the k pair-wise temporal relation embeddings for the semantic
neighborhood of each feature point can be generated in parallel.

2.2.2. Attentive pooling-based aggregation

For local features aggregation, the max and average pooling
seem to be the common choices [21, 23]. However, for the ASC
task, it had been verified that learning audio representations in
a larger receptive field is more effective [13]. Inspired by [26]
and [25], we tend to use a more powerful attention-based pool-
ing method that can automatically learn important local features
from the neighborhood with more feature points. Our attentive
pooling-based aggregator consists of the following steps:

1) Attention weights computing. Given the pair-wise tem-
poral relation embeddings, {e!,...,e*}, of x;, a shared MLP
followed by a softmax layer is used to calculate the attention
weights. Specifically,

w; = softmaz(g(e;))

3



Indexing '

==

NFT Neighborhoods

: (1,0 (1,3):
=}

|60 3)J'

Indexing :

Grouping
NFT Embeddings

ATReSN

1,0) (1,3)
(k,C) (k3

(k,2C+16) 1

B Center feature point @ Dot product
Attentive Pooling B Neighbor feature point

B Point position indexes MLP for augmgnted

[ Augmented position embedding position encoding

B Pair-wise TR embedding MLP for pair-wise

[ Attentive TRs embedding TR encoding

Concatenating :

Attentive TRs Aggregator (ATRA) @ Element-wise addtion

MLP for attention
weights

Figure 2: Illustration of our ATReSN in a 3D convolutional architecture. TR is short for temporal relation, N F'T' means N x F' x T.

where w$ is the weight vector for 5, and g : R® — R denotes
the MLP with shared weights.

2) Weighted summation. By using the attention weight vec-
tors, the attentive temporal relations embedding for each seman-
tic neighborhood can be obtained as

k

2 : s s
a; = w,;-€,;.

s=1

Compared with max/avg-pooling, the attentive pooling can be
regarded as a soft aggregating function with learnable param-
eters. It filters out those local temporal relations that should
be concerned by the classifier, from the neighborhood of each
feature point. Once all the attentive temporal relations em-
beddings, a@; with ¢ = 1,..., NTF are obtained, they will be
grouped to form IV tensors of the same size with the feature
maps, {X1,...,X~}, according to the indexes of their corre-
sponding feature points. Finally, an element-wise addition is
conducted on both the target feature maps and embedding maps
to form the input tensors for the following 3D Conv block.

“

2.3. ATReSN-Net architecture and implementation

The ATReSN works as an intermediate block like the Conv or
residual (Res) block, and can be easily inserted into the classic
CNN architectures. In this work, the ResNet [6] with a depth
of 18 and its variant PreAct [27] are utilized as the backbones
for our ATReSN-Net, respectively. We first train the backbones
using the small segments of the entire Log Mel-Spectrogram of
each audio sample in the training dataset. Then, all the Conv
and pooling operations of the pre-trained backbone are trans-
formed into their 3D forms. Finally, the ATReSN-Net is con-
structed by inserting the ATReSNs between two adjacent 3D
residual blocks and removing the last FC layer in the backbone.

As shown in Table 1, for the Conv kernels in each 3D Res
block, the additional dimension for the N spectrogram segments
is 1, and the number of the channels is kept the same with
the ResNet-18. Hence, each 3D Res block can be regarded as
the combination of N 2D Res blocks with shared parameters in
parallel, and there is no increase in the number of parameters.
Moreover, since the weights of the ATRA block are also shared,
the number is not changed as increasing the hyper-parameter,
k for the SNG. Thus compared with the ResNet-18 (approxi-
mately 22.3M parameters), there is no significant increase of
parameters for the ATReSN-Net.
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Table 1: The ATReSN-Net architecture with two ATReSNs using
ResNet-18 as backbone, s denotes stride.

Module Description Output Size
Input Log Mel-Spec sequence: (NN, 128, 80, 3)
3D Conv_0 1x3x3,64 (N, 128, 80, 64)
3D Max-Pool.0 1 x3x3,s:(1,2,2) (N, 64,40,64)
3D Res_1.x {1 x3x3,64} x4 (N, 32,20, 64)
3D Res.2_1 {1x3x3,128} x2 (N,16,10,128)
ATReSN_1 3 shared MLPs (N, 16, 10, 128)
3D Res 22 {1 x3x3,128} x2 (N,]I6,]10,128)
3D Res_3_1 {1 x 3 x 3,256} x2 (N, 8,5, 256)
ATReSN_2 3 shared MLPs (N, 8,5, 256)
3D Res 32 {1 x3x 3,256} x 2 (N, 8,5, 256)
3D Res_4.x {1x3x3,512} x4 (N, 4,2,512)

Global Avg-Pool, 10-d FC, softmax (#parameters: 22.6M)

3. Experiments and discussion

The experiments was conducted on the DCASE 2018 [2] and
2019 [3] ASC task la datasets. For each audio recording, the 3
channels 128 bands Log Mel energies that calculated from the
original binaural signals and their differences with a frame size
of 2048 samples (50% hop size) were extracted. Then each Log
Mel-Spectrogram was split into 8 (i.e., N = 8) small segments
of 80 frames long. For the backbone pre-training, the small
Log Mel-Spectrogram segments in the training set were used to
train the network. The SGD with Nesterov momentum [28] was
used as the optimizer with the initial learning rate of 0.1, mo-
mentum of 0.9, weight decay of 0.0001, batch size of 128, and
maximum epochs of 105. The learning rate decreased every 30
epochs exponentially with a rate of 0.1. For the ATReSN-Net
fine-tuning, the ordered Log Mel-Spectrogram sequence of each
training sample was used as the input. The SGD with momen-
tum was used as the optimizer with the initial learning rate of
0.002, momentum of 0.9, weight decay of 0.0001, batch size of
16, and maximum epochs of 100. The learning rate decreased
every 40 epochs exponentially with a rate of 0.1.

3.1. Comparisons with ResNet-baselines

To verify the effectiveness of our ATReSN-Net, two backbones,
ResNet-18 and PreAct-18 were used as the baselines, and their
test results were obtained by averaging the outputs of 8 seg-
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Figure 3: Comparisons of ATReSN-Nets and ResNet backbones.

ments in each testing sample. Based on each pre-trained back-
bone, two ATReSN-Nets with cosine and Lo distances were
fine-tuned. And they were all equipped with 4 ATReSNs locat-
ingin[2_1,2_2] (i.e., between Res_2_1 and Res_2_2), [2.2, 3_1],
[3-1,3.2] and [3-2, 4_1]. The hyper-parameter, k for SNG was
set to 4. As shown in Figure 3, the ATReSN-Nets significantly
outperform their corresponding backbones by capturing tempo-
ral relations from different RFs. The best results are achieved
by the ResNet-based ATReSN-Net using L semantic distance.

3.2. Ablation studies

For the ablation experiments, the backbone was ResNet-18, the
default k value was 8, and 4 ATReSNs with Lo distance were
used (the locations are consistent with Section 3.1).

a) Ablation on ATReSN. The ATReSN enables the network
to explicitly aggregate important temporal relations in the se-
mantic neighborhood. After removing ATReSN, the 3D ResNet
would not extract local relations from different T-F RFs, and the
aggregation is only performed on the global avg-pooling layer,
which could inevitably result in the loss of information. Results
in Table 2 show that our network significantly outperforms the
3D ResNet without the ATReSN.

Table 2: Ablation experiments on ATReSN and augmented po-
sition encoding.

Ablated Network (k = 8) DCASE19 Acc. (%)

Network without ATReSN 75.86
Network with relative positions 79.98
Network with augmented positions 80.17
The Full Network (ATReSN-Net) 80.68

b) Ablation on attentive pooling. The attention mechanism
helps our network to focus on the temporal relations that would
benefit the classification. As a hard aggregation, max-pooling is
usually effective for most cases. However, when performing on
the larger receptive field, it would lead to leakage of useful in-
formation. For ablation on our attentive pooling aggregator, we
designed an alternative version of ATReSN-Net, called TReSN-
Net, by replacing the aggregator with a max-pooling layer. As
shown in Figure 4, when k < 4, the performance of the two
networks is rather close, and for the larger k, ATReSN-Net is
better. This may indicate that the attentive pooling, as a soft ag-
gregation, is more robust for aggregating information in larger
RFs than the max-pooling.

c) Ablation on augmented position encoding. By consid-
ering the positions and relative displacements, our PaTRE unit
can embed the local structure and temporal changes of the two
semantic neighbors. A learnable MLP was used to encode the
10-d augmented positions for making full use of position in-
formation. Results in Table 2 show that, by encoding the aug-
mented positions, a better performance can be further achieved.
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Figure 4: Performance comparisons of networks using max-
pooling and attentive pooling-based aggregating methods.

Table 3: Comparisons with other methods, simo is the strategy
of a single model without ensemble or data augmentation. Sp-
cAug denotes SpecAugment data augmentation.

DCASE Acc. (%)

Method Strategy

2018 2019
CNN baseline [2, 3]  simo 59.70 62.50
Jung et al. [4] 4 models 73.82 -
CNN-GRU_TS [10] simo 74.26 -
Ensemble [10] 2 CNNs 77.36 -
CNN_NNF [18] 12 CNNs 69.30 -
Atrous CNN [13] simo 72.70 -
SubSpectralNet [11]  simo 74.08 73.44
DM-PTP [14] simo 75.80 76.91
FCNN-triplet [12] simo + SpcAug - 77.19
ResNet-50 [9] simo + SpcAug - 77.87
AclSincNet [9] simo - 76.08
SeNoT-Net [24] simo 77.19 80.34
ATReSN-Net (ours) simo 77.87 80.68

3.3. Comparisons with other methods

The results of the state-of-the-art ASC methods in Table 3
are from their corresponding articles. As shown in the ta-
ble, our ATReSN-Net outperforms the CNN-based methods
without learning temporal relations from different T-F RFs
[2, 3, 4, 13, 9]. Compared with the sequential modeling meth-
ods, CNN-GRU_TS [10] and DM-PTP [14], our new method
can also achieve higher accuracies, even for the ensemble model
in [10]. Compared with SubSpectralNet [11] that only focus
on extracting local relations from different frequency bins, our
method shows better performance by capturing local relations
from different RFs in both time and frequency domains. Fur-
thermore, the ATReSN-Net can even surpass the FCNN with
SpecAugment [29] data augmentation. By collecting the neigh-
bors in high-level semantic feature maps instead of the raw input
features, our method significantly outperforms the CNN_NNF
[18]. And compare to our former work [24], the performances
on both two datasets can be further improved by applying the
attention-based aggregation for the temporal relations within
the semantic neighborhoods.

4. Conclusions

In this paper, we propose a novel 3D CNN for ASC by captur-
ing attentive temporal relations from a semantic neighborhood
in the acoustic scene. We transform the ResNets into their 3D
forms, and present the ATReSN-Net by inserting the ATReSNs
into the 3D ResNets. With multiple ATReSNs in different lay-
ers, our network can learn temporal relations in multi-scales,
and by aggregating the temporal relations from a neighborhood
with the attentive pooling, the effective temporal relations em-
bedding can be extracted from a large receptive field.
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