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Abstract

Increasing speech intelligibility for hearing-impaired listeners
and normal-hearing listeners in noisy environments remains a
challenging problem. Spectral style conversion from habitual
to clear speech is a promising approach to address the prob-
lem. Motivated by the success of generative adversarial net-
works (GANs) in various applications of image and speech pro-
cessing, we explore the potential of conditional GANs (cGANs)
to learn the mapping from habitual speech to clear speech. We
evaluated the performance of cGANs in three tasks: 1) speaker-
dependent one-to-one mappings, 2) speaker-independent many-
to-one mappings, and 3) speaker-independent many-to-many
mappings. In the first task, cGANs outperformed a traditional
deep neural network mapping in terms of average keyword re-
call accuracy and the number of speakers with improved intel-
ligibility. In the second task, we significantly improved intel-
ligibility of one of three speakers, without any source speaker
training data. In the third and most challenging task, we im-
proved keyword recall accuracy for two of three speakers, but
without statistical significance.
Index Terms: intelligibility, voice conversion, style conversion,
conditional generative adversarial networks, dysarthria

1. Introduction
There are approximately 28 million people in the United States
who have some degree of hearing loss [1]. Understanding
speech can be difficult for hearing-impaired listeners, and also
for normal-hearing listeners in adverse environments. In an ef-
fort to increase the intelligibility of speech, researchers have
studied noise suppression and cancellation techniques [2, 3, 4,
5]. Another approach is to alter the speech signal prior to pre-
sentation in a noisy environment; these techniques can be classi-
fied into several categories, including: utilizing audio and signal
properties such as amplitude compression [6], dynamic range
compression [7, 8], peak-to-rms reduction [9], and formant-
enhancement [10]. Other techniques exploit the knowledge of a
noise masker such as optimizations based on a speech intelligi-
bility index [11] or glimpse proportion measure [12, 13]. An ex-
tensive evaluation, which was conducted over 26 speech modifi-
cation techniques [14], showed that combining spectral shaping
and dynamic range compression was able to boost intelligibil-
ity in terms of equivalent intensity changes by more than 5 dB
gain over unmodified natural speech in some noise conditions.
However, the spectral shaping only sharpened the peaks and in-
creased spectral energy significantly in the 1–4 kHz band, but
did not involve detailed spectral modification.

This material is based upon work supported by the National Insti-
tutes of Health under Grant R01DC004689.

There are also techniques that consider the intelligibility
gains due to a clear (CLR) speaking style [15, 16, 17], inspired
by the acoustic characteristics of CLR speech such as spectral
flattening and vowel space expansion [18, 19]. Typically, CLR
speech is highly-articulated, with a slower speaking rate, and
more frequent pauses; the exact strategy varies from speaker-
to-speaker. Previously, we used hybridization experiments to
establish that speech intelligibility of habitual (HAB) speech
can be increased when certain acoustic features from parallel
CLR speech are incorporated [20, 21]. This suggests that it
should be possible to automatically increase the intelligibility
of speech by learning a mapping between HAB and CLR fea-
tures, or style conversion. In our previous experiments, we used
a speaker dependent deep neural network (DNN) mapping the
parameters of a manifold vocoder for style conversion, signif-
icantly improving the speech intelligibility of a speaker with
Parkinson’s disease from 24% to 46% [22]. However, DNN
mappings are still limited by over-smoothing of converted spec-
tra, leading to muffed speech [23]. Recently, the generative
adversarial network (GAN) [24] has been shown to be effec-
tive in addressing the over-smoothing problem in voice conver-
sion [23] and speech synthesis [25, 26]. We can consider the
HAB-to-CLR mapping as an image-to-image translation task,
in which the image is a window of the time-frequency repre-
sentation of speech. In image-to-image translation, a condi-
tional GAN (cGAN) [27] proved to be effective in generating
less blurry images by combining a traditional adversarial loss
and a mean absolute reconstruction loss (or L1 loss). In this
paper, we leverage the cGAN architecture for HAB-to-CLR
style conversion in three cases: 1) speaker-dependent one-to-
one mappings, 2) speaker-independent many-to-one mappings,
and 3) speaker-independent many-to-many mappings. The first
case is our effort to improve our previous results [22]. In Sec-
tion 3, we report on the efficacy of a cGAN-based one-to-one
style conversion. However, training a speaker-dependent map-
ping is not possible in real-world applications, because typically
CLR speech (parallel or not) is not available for a new source
speaker. Therefore, in Section 4, we investigated a many-to-one
mapping where we mapped HAB speech of every speaker to
the CLR speech of a single speaker with the best sentence-level
intelligibility. The idea of many-to-one voice conversion for in-
telligibility improvement was previously investigated to trans-
form speech from any speaker regardless of accent, prosody,
and background noise into a canonical target speaker [28]; how-
ever, their model required an enormous amount of training data.
An issue for the many-to-one mapping is not preserving the
characteristics of source speakers; therefore, in Section 5, we
investigated a many-to-many mapping where a HAB-to-CLR
mapping was trained on all speakers’ style pairs simultaneously.
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Figure 1: cGAN framework for style conversion.

2. Conditional Adversarial Network
Traditional GANs have a generative model or a generator (G)
and a discriminative model or a discriminator (D), that together
play a min-max game. Component G tries to fool component
D by generating outputs close to the real data, while component
D is trained to distinguish the output of component G from
real data. Component G is a mapping function from random
noise z to y, G : {z} → y [24]. In contrast, a cGAN model
learns a mapping from an input x and random noise z to y, G :
{x, z} → y. The cGAN model has both G and D conditioned
on input x [27], trained with the objective function L(D,G):

min
G

max
D
L(D,G) = (1)

Ex,y [logD(x, y)] + Ex,z [log(1−D(x,G(x, z)))]

In our cGAN, we did not use random noise z, because
using random noise input for generator G has proven ineffec-
tive [27, 29]. Instead, our generator mapped HAB speech fea-
tures to aligned CLR speech features as shown in Figure 1. For
the input vector of G, we added context by concatenating the
current HAB frame in our VAE-12 representation [22] with five
preceding and five following frames. We normalized the input
and outputs of the network via standard scaling. The input of
D consisted of either the output of G or aligned CLR feature
frames, combined with the current HAB feature frame (what
we wanted the output to be conditioned on). Thus, both G and
D are conditioned on the current HAB feature. In addition to
the adversarial loss function L(D,G) in Equation 1, we also
minimized the L1 loss between the output of G and the ground
truth; this addition was demonstrated to generate less blurry out-
put compared to a root-mean-squared reconstruction loss [27].
We added the L1 loss with a scaling factor of 100 to L(D,G).

The structure of G is shown in Figure 2 [22]. By adding
the input of G to the output of its last layer, we expected the
network to focus on the difference between the HAB and CLR
VAE-12 representations. The discriminator is a DNN with two
hidden layers of 256 nodes each, and a single node output layer
with sigmoidal activation function. To help stabilize the train-
ing process, we used 1) a leaky ReLU activation function with a
slope of 0.2 for negative inputs for both G and D, 2) a dropout
layer following each hidden layer of D with a dropout rate
of 0.5, 3) the Adam optimizer with a batch size of 128, and
4) weights initialized from a zero-centered normal distribution
with standard deviation 0.02 [30]. We used a momentum of 0.5,
a learning rate decay of 0.00001, and learning rate of 0.0001
for D, and 0.0002 for G.
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Figure 2: Generator architecture.

3. Experiment: One-to-One Mapping
3.1. Data
We used a database with 78 speakers consisting of control
speakers (CS, N=32), speakers with multiple sclerosis (MS,
N=30), and speakers with Parkinson’s disease (PD,N=16) [31,
32]. All read the same 25 Harvard sentences in habitual and
clear conditions (loud, slow, and fast conditions were also avail-
able). Speaker’s names consisted of group, gender, and number,
e. g. PDF7 was the seventh female speaker with PD.

3.2. Method
We applied our proposed cGAN conversion method to con-
vert between two styles of a speaker; specifically, we aimed
to convert the spectral aspects of a the HAB style to those of
the CLR style, in an effort to improve the speech intelligibil-
ity of the former. For analysis and synthesis, we used a mani-
fold vocoder [22]. The vocoder extracts fundamental frequency
(F0), aperiodicity, and VAE-12 from each utterance.

We selected three speakers: CSM7, PDF7, and PDM6,
who have been shown to benefit the most from the CLR spec-
trum [22]. We aligned each HAB utterance to its parallel CLR
utterance of the same speaker using dynamic time warping
(DTW) on 32nd-order log filter bank features. Then, we pre-
trained the generator that maps HAB VAE-12 to CLR VAE-12,
minimizing a mean-squared-error loss. The pre-training stops
when there is no progress in a validation set; the maximum
number of epochs was 100 . Finally, we trained our proposed
cGAN structure up to 300 epochs.

We created conversion stimuli using the mapped VAE-12,
and F0 and aperiodicity information from the source HAB
speech. To create the 25 conversion sentences, we used a leave-
one-out approach, using 22 sentences for training and two for
validation. Hybrid stimuli were created by replacing the HAB
spectra with their aligned CLR spectra [20].

3.3. Objective Evaluation
We compared the performance of our proposed cGAN to our
previous DNN [22]. Table 1 shows the average log spectral
distortion (LSD) between mapped VAE-12 and CLR VAE-12.
The cGAN mapping has typically smaller average LSD than
its DNN counterpart. Specifically, Figure 3 shows the LSD
of 25 test sentences from our two mappings. For most sen-
tences, the LSD of the GAN mapping is lower than the LSD
of the DNN mapping. Moreover, Figure 4 shows the variance
ratio σ2

CLR/σ
2
MAP between CLR VAE-12 and mapped VAE-12

for each feature component. The smaller variance ratio of the
cGAN mapping method suggests that the over-smoothing effect
is reduced compared to the DNN-based method. Figure 5 shows
a comparison of various spectrograms.
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Figure 3: Log spectral distortion (LSD) of 25 test sentences for
three speakers.
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Figure 4: Variance ratios between CLR VAE-12 (CLR) and
mapped VAE-12 (MAP) features (smaller is better).

3.4. Subjective Evaluation
LSD is not a good predictor for human perception; to evaluate
speech intelligibility, we designed a test consisting of 25 sen-
tences × 3 speakers (CSM7, PDF7, PDM6) × 5 conditions (2
purely vocoded, 1 hybrid, 2 mappings) = 375 unique trials in
a Latin-square design. We performed the test on Amazon Me-
chanical Turk (AMT), where 60 participants listened to 25 Har-
vard utterances containing five keywords each. Listeners typed
out each sentence as best as they could, and we calculated the
average number of keywords correctly identified. The hybrid
stimuli show an upper bound (or “oracle” mapping) on the in-
telligibility improvement. The vocoded HAB and vocoded CLR
were obtained through analysis and resynthesis with unchanged
parameters, using the manifold vocoder. We minimized the

mapping \ speakers PDF7 PDM6 CSM7
DNN 16.8 16.67 16.44
GAN 12.85 12.58 12.67

Table 1: Average LSD (in dB)

Figure 5: Spectrogram of habitual speech (HAB), DNN map-
ping (DNN), cGAN mapping (GAN), and clear speech (CLR),
from speaker PDF7, reading “Four hours of steady work faced
us”. Note the difference in formants between 2–4 kHz from the
50th–100th frame between the DNN and cGAN methods.

loudness differences between stimuli by normalizing gains in
accordance with a RMSA measure. Finally, each utterance was
mixed with babble noise at 0 dB SNR to avoid response satu-
ration effects. Figure 6 shows average keyword accuracy. We
observed that the cGAN mapping led to a statistically signifi-
cant improvement (p < 0.001) for two speakers: PDM6 and
CSM7, using a two-tailed t-test. In both cases, the cGAN map-
ping significantly outperformed the DNN-mapping, improving
the intelligibility of two of three speakers, compared to our pre-
vious work where only one speaker improved [22].

4. Experiment: Many-to-One Mapping

A real-time application for speech intelligibility enhancement
ideally does not require specific training on the source’s
speaker’s speech, and can thus be considered (source) speaker-
independent. Therefore, we studied a many-to-one mapping ap-
proach where we mapped HAB speech of every speaker to the
CLR speech of a single speaker with the best sentence-level in-
telligibility. We used the same data as the previous experiment.
The CLR speech of the two speakers CSM10 and CSF15 had
highest sentence-level intelligibilities [31, 32] and were thus
selected as target speech for the male and female case, respec-
tively. We trained two gender-dependent mappings that mapped
all HAB VAE-12 features of all male (or female) speakers (ex-
cept one of three speaker CSM7, PDF7, PDM6) to CLR VAE-
12 of CSM10 or CSF15, respectively. The HAB speech of the
three speakers CSM7, PDF7, and PDM6 was used for testing.
The mapped VAE-12, in combination with the original F0 and
aperiodicity of the source speaker, were used to create conver-
sion stimuli. Hybrid stimuli were created by replacing HAB
spectra of the source speaker with aligned CLR spectra of the
target speaker using hybridization.
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Figure 6: Keyword recall accuracy of three speakers. The
dashed lines show statistically significant differences.

4.1. Objective Evaluation
The average LSD between mapped and CLR spectrograms,
with LSD between the input HAB and CLR spectrograms in
parentheses, were: 17.32 (21.57) dB for CSM7, 22.7 (27.62) dB
for PDF7, and 18.8 (23.28) dB for PDM6, confirming that the
mapped speech is closer to CLR speech than input HAB speech.

4.2. Subjective Evaluation
To evaluate the efficacy of the method in terms of intelligibil-
ity, we designed a test consisting of 25 sentences × 3 source
speakers (CSM7, PDF7, PDM6)× 3 conditions (vocoded HAB,
cGAN-mapping, hybrid) + 25 sentences × 2 target speakers
(CSM10, CSF15) × 1 condition (vocoded CLR) = 275 unique
trials. We conducted the listening experiment similarly to the
previous one, except the number of listeners was 44. Figure 7
shows the resulting keyword accuracy. We found that our many-
to-one style conversion significantly improved the intelligibility
of one speaker of three test speakers from 17.6% to 34.4%, us-
ing a two-tailed t-test (p < 0.01) , while there is no improve-
ment in other cases.

5. Experiment: Many-to-Many Mapping
The disadvantage of the previous many-to-one mapping is that
speaker characteristics cannot be preserved. Thus, we inves-
tigate the most realistic scenario of a many-to-many mapping
that aims to learn solely the style differences, while preserving
the linguistic message and speaker characteristics. This task is
the hardest among our three experiments because not all speak-
ers’ spectral changes across styles have been shown to benefit
speech intelligibility [22]. We used the same data as the previ-
ous experiments. We aligned each HAB utterance to its parallel
CLR utterance of the same speaker using DTW on 32nd-order

CSM7 PDF7 PDM6
vocoded HAB 36.8 10 28.8

GAN 39.6 15.6 26.8
hybrid 62 22.8 57.6

vocoded CLR 66.8 22.4 48

Table 2: Average keyword accuracy
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Figure 7: Keyword recall accuracy of three speakers. The
’vocoded CLR’ condition denotes clear speech of target speak-
ers CSM10 and CSF15 for male and female cases, respectively.
The dashed lines show statistically significant differences.

log filter-bank features. Then we trained all one-to-one map-
pings from HAB VAE-12 to CLR VAE-12 simultaneously.

5.1. Objective Evaluation
The average LSD between the cGAN mapping and CLR spec-
trograms for the three test speakers, with the LSD between HAB
and CLR spectrograms in parentheses, are: 16.36 (17.0) dB for
CSM7, 16.66 (17.53) dB for PDF7, and 16.42 (18.06) dB for
PDM6, confirming that the mapped speech is closer to CLR
speech than the input HAB speech.

5.2. Subjective Evaluation
We designed a test consisting of 25 sentences × 3 speakers
(CSM7, PDF7, PDM6) × 4 conditions (vocoded HAB, GAN,
hybrid, vocoded CLR) = 300 unique trials. We conducted the
experiment similarly to the previous ones, except the number
of listeners was 24. Table 2 shows average keyword recall ac-
curacy. The cGAN resulted in improvements for two speakers:
CSM7 and PDF7. However, the results were not statistically
significant using a two-tailed t-test (p > 0.05).

6. Conclusion
We explored a cGAN architecture for spectral style conver-
sion in increasingly challenging experiments. In the speaker-
dependent one-to-one mapping case, we showed that the cGAN
outperformed a DNN in terms of average keyword recall accu-
racy in all cases. Moreover, the cGAN significantly improved
speech intelligibility of two of three speakers, compared to only
one speaker when using the DNN. In the speaker-independent
many-to-one mapping case, we significantly improved speech
intelligibility of one of three speakers, with average keyword
recall accuracy increasing from 17.6% to 34.4%. In the speaker-
independent many-to-many mapping case, the cGAN improved
average keyword accuracy over that of vocoded HAB speech
for the two speakers CSM7 and PDF7, but without statisti-
cal significance. While these are modest results, they show
promise for developing automatic speaker-independent speech-
intelligibility increasing approaches, especially given the small
dataset and the fact that we did not attempt to transform addi-
tional acoustic features, such as phoneme durations.
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