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Abstract

Recent advancements in representation learning enable cross-
modal retrieval by modeling an audio-visual co-occurrence in a
single aspect, such as physical and linguistic. Unfortunately, in
real-world media data, since co-occurrences in various aspects
are complexly mixed, it is difficult to distinguish a specific tar-
get co-occurrence from many other non-target co-occurrences,
resulting in failure in crossmodal retrieval. To overcome this
problem, we propose a triplet-loss-based representation learn-
ing method that incorporates an awareness mechanism. We
adopt weakly-supervised event detection, which provides a con-
straint in representation learning so that our method can “be
aware” of a specific target audio-visual co-occurrence and dis-
criminate it from other non-target co-occurrences. We evalu-
ated the performance of our method by applying it to a sound
effect retrieval task using recorded TV broadcast data. In the
task, a sound effect appropriate for a given video input should
be retrieved. We then conducted objective and subjective evalu-
ations, the results indicating that the proposed method produces
significantly better associations of sound and visual effects than
baselines with no awareness mechanism.
Index Terms: crossmodal retrieval, audio-visual co-
occurrence, multi-task learning, deep neural network

1. Introduction
Visual and sound events often tend to occur simultaneously: up-
per and lower lips move while talking; car passes on a street
with engine sound; visual and sound effects are aligned in a
movie. Such co-occurrence between vision and sound plays an
important role in the way humans learn to associate visual ob-
jects to abstract concepts [1, 2]. There have been many studies
on crossmodal learning using audio-visual co-occurrence. The
applications of their models are crossmodal retrieval [3–12],
sound source separation and localization [13–18], and audio-
visual scene analysis [19–22]. In this paper, we tackle sound-
effect retrieval from a video; automatically retrieving suitable
sound effects corresponding to a given video input. Specifi-
cally, we use real TV broadcasting as a source of training data,
which were weakly-labeled for our training purposes.

Previous studies on crossmodal learning focused on learn-
ing the co-occurrence in a single aspect, such as linguistic in-
formation [3–10] or physical information [11, 12]. Harwath et
al. proposed an embedding model for associating visual objects
with spoken words, where many pairs comprising a static im-
age and a spoken audio caption were successfully used for a
crossmodal retrieval task [3]. Owens et al. proposed a model
to predict sound from videos as a way to study physical interac-
tions within a visual scene, where they used hundreds of videos
of people hitting, scratching, and prodding objects with a drum-
stick [11].

�!����

Video

Audio

Sound Effect
Audio

Embedding

Awareness
mechanism

Video
Encoder

Audio
Encoder

Video
Embedding

Target event Detection

Retrieval

Figure 1: System overview applying proposed method

As a new crossmodal retrieval task, we took up real TV
broadcasting as a source of learning data. In TV programs,
sound effects tend to appear with other sounds, such as speech
and music; therefore, the audio-visual co-occurrences in vari-
ous aspects are complexly mixed. The robustness of the model
with respect to noisy backgrounds is thus crucial. To model
a specific audio/visual co-occurrence, we first need to identify
which part of the audio/visuals should be attributed as the tar-
get. This is similar to what voice activity detection does in au-
tomatic speech recognition [23,24] in terms of motivation. This
requirement suggests that the training of a crossmodal retrieval
system requires not only merely focusing on the representation
learning of the target co-occurrence but also retrieving the target
audio/visual event from the mixture of several co-occurrences.
Practically, the system should be trained with weakly-labeled
data because it is costly to annotate massive audio/visual data
with strong labels.

We propose a triplet-loss-based representation learning
method that incorporates an awareness mechanism. Figure 1
shows an overview of a crossmodal retrieval system with the
proposed method applied. Audio and video representations are
extracted with an audio encoder and video encoder respectively.
The system then retrieves a suitable sound effect whose audio
embedding is similar to the query video’s embedding. These
embeddings need to be able to distinguish between the target
co-occurrence and the others. To train such robust encoders,
our method incorporates an awareness mechanism, which is an
additional component to detect whether the input video/audio
contains the weakly-labeled target event.

2. Related Works
Recent crossmodal retrieval methods are mainly based on ad-
vancements in deep neural network (DNN)–based representa-
tion learning. In representation learning, DNNs are trained via
loss function that associates between audio and visual based on
similarity such as triplet loss. The simplest form of a triplet loss
function can be written as:

Tδ(A,P ,N) = max(D(A,P )−D(A,N) + δ, 0), (1)

where, D(a, b) means the distance between vectors a and b
defined as D(a, b) = ‖a− b‖2, where, ‖·‖2 is `2 norm. Three
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Figure 2: Network architecture of the proposed method. “SE label” denotes binary label of sound effect.“S- and T-avgpool” denotes
average pooling to spatial and temporal dimensions, respectively. In CNN block part, “Conv-2D”, “Batch Norm.”, “maxpool” denotes
2-D convolutional layer, batch normalization, and max pooling, respectively.

vectors A,P and N are embeddings of an anchor, positive and
negative samples respectively. The parameter of T denoted as
δ is a positive constant called the margin parameter.

Linguistic-oriented crossmodal retrieval is a hot topic in
this area [3–10]. Harwath et al. proposed a crossmodal retrieval
method for direct and bidirectional retrieval between images
and spoken words on an image-captioning dataset [3]. By using
spoken words instead of text, it is expected that richer informa-
tion can be used for retrieval such as voice pitch and speed. Not
only image-audio retrieval, a recent study of linguistic-oriented
crossmodal retrieval attempted to video-audio retrieval. Bog-
gust et al. proposed a joint multi-modal embeddings in cooking
show videos where the audio and visual streams are loosely syn-
chronized [5].

Physical interactions between a visual scene and the cor-
responding sound should also be an important aspect for as-
sociating audio and visuals [11, 12]. The sound generated by
the physical interactions is mainly determined by the material
of the object and its action. Owens et al. focused on this co-
occurrence and proposed a method of predicting and retrieving
visually indicated sounds [11]; they modeled the physical co-
occurrence between sound and image using a dataset of people
hitting, scratching, and prodding various objects with a drum-
stick.

3. Proposed method
Our ultimate goal is to establish a crossmodal retrieval system
using real-world video data in which various co-occurrence are
complexly mixed. In this study, we first tackled the task of re-
trieving sound effects from TV broadcasting videos; automati-
cally retrieving a suitable sound effect corresponding to a given
video input.

3.1. Basic Idea

In Japanese TV programs, short sound effects of about 1 to 5
seconds are often added synchronously with various movements
of video, such as, visual effects (e.g. appearance of superim-
posed captions), scene changes, and human motions. In this
study, we focused on the co-occurrences across sound and vi-
sual effects. As a characteristics in sound/visual effects in TV
programs, these effects are shorter than other sounds such as
speech and background music (BGM), resulting in a tendency to
be buried in other sounds. Therefore, our target co-occurrence
exists in a mixture with other non-target co-occurrence, and we
need to identify which parts of the sounds/visuals correspond to
our target. Even in such a mixture of co-occurrences, humans
can find and associate sound effects and visual effects. This is
because humans can be aware of, and pay attention to the pres-
ence of these effects. To imitate these human abilities, we com-

bine an awareness mechanism into conventional co-occurrence-
based representation learning.

As an implementation of the above idea, we propose a
multi-task learning of the audio-visual representation learning
and weakly-supervised sound effect detection via an awareness
mechanism. Figures 1 and 2 give an overview and the detail
of the network architecture used in the proposed method. Our
system consists of three parts of DNNs, i.e., video encoder, au-
dio encoder, and the awareness mechanism. The video encoder
and audio encoders encode a video and an audio signal into a
shared embedding space, respectively. These encoders learn the
semantic associations based on the co-occurrences across the
given pair of a video and an audio. Thus, the encoders are also
used in the testing-phase of sound effect retrieval. In contrast,
the awareness mechanism is an auxiliary network and that is
only used in the training-phase. The aim of this network is to
train the encoders so as to detect the target occurrence from the
mixture by identifying whether the input video/audio includes
sound effects or not based on multi-task learning manner.

3.2. Implementation

Network Architecture: The video encoder f is used to embed
videos x ∈ RH×W×P into the latent space as F = f(x) ∈
RD , where, H , W , and P are height, width, and the number
of frames of the video. Since video effects synchronized with
sound effects often have characteristic movements to attract hu-
man attention, we use 3D-convolutional neural network (CNN)
as the video encoder to extract not only spatial but also temporal
features. We utilized the upper 3-layers of Resnet18-3D (R3D-
18) [25] pre-trained with Kinetics-400 [26] which is used for a
human action classification task. The video features extracted
from R3D-18 are embedded in the D-dimensional latent space
through a linear layer and pooling layers.

The audio encoder g is used to embed an audio signal
y ∈ RT into the latent space G = g(y) ∈ RD . Here T is
the number of sample points in the time-domain. In the audio
encoder, at first, the audio signal is first transformed to the log-
absolute value of the short-time Fourier transform (STFT) spec-
trogram. The STFT spectrogram is then input to the CNN block
for higher-order feature extraction. The extracted feature is next
embedded in the D-dimensional latent space through a linear
layer and a pooling layer. The audio encoder was pre-trained
via a single-modal sound effects detection task with the aware-
ness mechanism. This pre-training allows the audio encoder to
extract features focusing on sound effects from the beginning of
our multi-task learning.

The awareness mechanism is implemented by linear layers
and activation functions. The activation function of the output
is the sigmoid function for calculating the posterior probability
of whether sound effect is exist or not. In the awareness mecha-
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nism, audio and video inputs are treated independently, and the
detection results are backpropagated to each encoder.

Loss Functions: The overall loss function of our proposed
method consists of three terms, i.e., inter-modal triplet loss
Linter, intra-modal triplet loss Lintra, and awareness loss Laware.
The entire network is trained in an end-to-end manner using a
loss function consisting of the sum of these three terms.

To train the audio and video encoders to associate audio and
visual based on co-occurrence, we used inter-modal triplet loss,
which is defined as:

Linter =

Nb∑
m=1

(Tδ(Fam ,Gpm ,Gnm)

+ Tδ(Gam ,Fpm ,Fnm)),

(2)

whereNb is the batch size, am is them-th anchor of triplet loss,
and pm, nm are positive and negative samples for the m-th an-
chor, respectively. In inter-modal triplet loss, positive and nega-
tive labels are directly obtained from the input video and audio.
If time stamps of the video and audio are the same, this pair has
a positive label. If not, the pair is labelled as negative.The neg-
ative samples are selected according to the following semi-hard
negative condition [27, 28] as

dp < dn < dp + δ, (3)

where dp and dn are the `2 distance between the anchor and the
positive sample and the `2 distance between the anchor and the
negative sample in the latent space, respectively. This inequality
shows that (i) negative samples closer to the anchor than the
positive samples are not used as negative samples, and (ii) a very
clear negative sample called easy-negative is excluded [27, 28].

Intra-modal triplet loss is a loss function for extracting the
embedding vectors that reflects the similarity within a modal
and was originally proposed for retrieval between texts and im-
ages [29]. This function is defined as:

Lintra =

Nb∑
m=1

(Tδ(Fam ,Fpm ,Fnm)

+ Tδ(Gam ,Gpm ,Gnm)).

(4)

In the intra-modal triplet loss [29], the positive sample is se-
lected as the sample closest to the anchor in the latent space.
The negative sample is selected as those that satisfies the semi-
hard negative condition of (3). It plays the role of a constraint
that makes intra-modal sample pairs with similar features be
close to each other in the latent space.

Awareness loss is a loss function that enables the awareness
mechanism to detect sound effect and written as:

Laware =

Nb∑
m=1

BCE(zAam , tam) + BCE(zVam , tam), (5)

where, zAam and zVam are the sigmoid outputs of the awareness
mechanism for m-th anchor of audio and video, respectively,
and tam is a binary weak label of sound event existence that
takes one if the m-th anchor contains sound effects and zero
otherwise.

Finally, to balance the triplet-based losses and Laware, we
introduced a technique called margin normalization for aggre-
gating these three losses, which is written as:

L = (Linter + λ1Lintra) /δ + λ2Laware, (6)

where, λ1 and λ2 are the hyper-parameters. For stabilizing
training, we exponentially increase δ during training progress
as [4]:

δ = δ0

(
δmax
δ0

)γ
, (7)

where, δ0 and δmax are the initial and finite value of the δ, and γ
is the current number of epochs divided by the maximum num-
ber of epochs. The problem with (6) is the triplet-based losses
changes their value in proportion to the margin δ, while Laware
does not. Therefore, the effect of Laware will wane as learning
progress. Thus, we normalize the triplet-based losses by divid-
ing them by δ to balance them with the other losses.

4. Experiments
4.1. Experimental Setup

Dataset: We collected a TV Sound Effect Dataset (TVSE-
Dataset) that consists of 240 hours of video broadcasted by the
Japan Broadcasting Corporation (a.k.a. NHK). This dataset in-
cludes 10 days’ worth of NHK broadcastings that were recorded
throughout the day. Thus, it includes the various categories
of TV programs such as news programs, TV dramas, come-
dies, and documentaries. In these TV programs, appropriate
sound effects for the video had been selected by professional
TV program editors. First, the 240-hour recording was divided
into 6.4-second short samples, and then each short sample was
weakly-labeled as to whether it contained a sound effect or
not. The total number of short samples in which a sound ef-
fect was included is 4725. These samples with sound effects
were divided into 3 splits on Ntrain = 3352, Nvalid = 479,
and Ntest = 894 samples for training, validation, and testing,
respectively. For fairness, the testing set consisted of a indepen-
dent one-day broadcast videos. In the training phase, randomly
selected samples without sound effects were also used. In the
testing phase, only samples with sound effects were used.

Hyperparameters: For the video input, the original video of
30 fps was downsampled to 5 fps and the resolution was com-
pressed to 224×224. Thus, H = W = 224 and P = 32. The
audio sampling frequency was 48 kHz. The STFT spectrogram
was then computed using a 2048 points Hanning window with
a 1024 points shift.

The number of hidden units in the linear layers of video and
audio encoders were 256 and 512, respectively. The number of
hidden units in the linear layers of the awareness mechanism
were 64, 64, 16 in order from the lower to higher layer, and the
threshold of awareness mechanism was fixed to 0.5. For the 2-
D convolution layers in the CNN block, we used a 3× 3 kernel,
a zero padding of 2, and a stride of 1, and the number of the
channels was 32. The embedding dimension D was set to 64.

We used ADAM optimizer [30] with a fixed learning rate
of 0.001. The weights of loss function λ1,2 were set to 0.1 and
1.0 respectively, and the margin hyperparmeters δ0 and δmax
were set to 1.0, 10.0 respectively. The parameters of these loss
functions were determined by taking into account the retrieval
accuracy of the validation split. Although the training always
concludes with 40 epochs, the model of an epoch that performed
the best for the validation set was used for the evaluation exper-
iments.

Retrieval procedure: In the testing phase, sound effect re-
trieval was carried out in the following procedure. First, all
the audio samples in the testing set were encoded to the audio
embeddings, and used as the sound effect dictionary. Next, a
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Table 1: Retrieval scores of objective evaluation

ACCrank R@5 R@50 R@100

Random 0.500 0.006 0.056 0.112
(A) Triplet 1 0.625 0.019 0.138 0.260
(B) Triplet 2 0.685 0.024 0.191 0.320
(C) Proposed 0.716 0.025 0.206 0.354

Table 2: Accuracy of sound event detection

Video audio

(C) Proposed 0.857 0.723

video sample was encoded to a video embedding, and used as a
query of sound effect retrieval. Finally, the retrieval result was
obtained by sorting the `2 distances between the video query
and all the audio embeddings in the sound effect dictionary.

Comparison methods: To investigate the effectiveness of our
method incorporating the awareness mechanism, we decided
the comparison methods based on an ablation study.

(A) Triplet 1 does not use an awareness mechanism and uses
only video samples containing sound effects for training.

(B) Triplet 2 does not use an awareness mechanism and uses
both video samples containing and not containing sound
effects for training.

(C) Proposed is the full-architecture of the proposed method.

By comparing (B) and (C), we can directly observe the changes
in their performance with and without the awareness mecha-
nism. However, without using the awareness mechanism, it is
not necessary to use a sample without sound effects for learn-
ing, and this may degrade the performance of (B). Therefore,
we included (A) for a fair comparison. As the worst case of the
sound effect retrieval, we refer to a random method as a base-
line. This is a method of ordering retrieval results in a random
order.

4.2. Objective evaluation

We conducted an objective evaluation using recall@K and
ranking accuracy as the metrics for objective evaluation. The
recall@K is the rate that the ground-truth audio files are within
the K-th rank of the retrieval result. The ground-truth of the
retrieval task was set to the audio-visual pair obtained from the
same sample. Since the evaluation based on Recall@K depends
on the choice of K, we also used a metric independent of K,
called the ranking accuracy [31]. The ranking accuracy is de-
fined as:

ACCrank =
1

Ntest + 1

∑
Ntest

(Rgt − 1) , (8)

whereRgt is the rank of the ground-truth.
Table 1 lists the results of the objective evaluation. The

results show that (C) outperforms the other methods in all the
metrics. From comparing with (B) and (C), we can confirm that
introducing the awareness mechanism is effective in improving
the performance. From comparing (A) and (B), the performance
improvement was observed by using the samples without sound
effects. We consider this may indicate that the difference be-
tween the samples with sound effects and the samples without
sound effects were implicitly learned and the attention to sound
effects was emphasized on the retrieval task.

**

Random (A)Triplet1 (B)Triplet2 (C)Proposed

M
O

S 
Sc

or
e *

Figure 3: Subjective evaluation results. The symbols ** and
* represent p < 0.01 and p < 0.05 in the one-sided
Mann–Whitney U-test, respectively.

Although the results in Table 1 indicate the effectiveness
of the awareness mechanism, they do not indicate whether the
awareness mechanism component works properly. To confirm
that the awareness mechanism works to find the sound effect,
we evaluated the detection accuracy. Table 2 lists the accuracy
in sound effect detection from audio or video of the awareness
mechanism used in (C). These results show that the awareness
mechanism works properly to detect sound effects.

4.3. Subjective evaluation

To verify the performance of the proposed method in terms of
human sense, we conducted a subjective evaluation experiment.
The evaluation samples were made by combining the sound ef-
fect with the highest retrieval rank for each video. Note that,
the timing of sound effects was manually aligned between au-
dio and video for the subjective evaluation samples. The eval-
uation was carried out by 18 participants. The participants
watched each of the video samples generated by the proposed
and comparison methods. Then they gave a five-point rating to
each sample in terms of appropriateness of sound effects for the
video, where each point means 5: excellent, 4: good, 3: fair,
2: poor, and 1: bad, respectively. Using the obtained scores
for each video sample, we calculated the mean-opinion-score
(MOS) for each method.

Figure 3 shows the results of the subjective evaluation. The
results show that the proposed method achieved the highest
MOS. In one-sided Mann–Whitney U-test, statistically signif-
icant differences (p < 0.05) were observed between (C) and
other comparison methods. Significant statistical differences
were not observed between the comparison methods and the
random method. These results indicate that the attention to
the specific co-occurrence by introducing the awareness mech-
anism is effective for the retrieval of more appropriate sound
effects in terms of human sense.

5. Conclusions
In this study, we proposed a triplet-loss-based representation
learning method that incorporates an awareness mechanism and
applied it to the sound effect retrieval task using TV broadcast
data. The audio and video representations were extracted using
DNN-based audio/video encoders and embedded in a shared la-
tent space. The awareness mechanism receives these embed-
dings and detects the weakly-labeled sound effects. We evalu-
ated the performance of our method by applying it to a sound ef-
fect retrieval task using recorded TV broadcast data. Objective
and subjective experiments showed that the proposed method
produces significantly better associations of sound and visual
effects than baselines with no awareness mechanism. There-
fore, we conclude that the proposed method is effective for
crossmodal retrieval.
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