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Abstract
Being able to control the acoustic events (AEs) to which we
want to listen would allow the development of more control-
lable hearable devices. This paper addresses the AE sound se-
lection (or removal) problems, that we define as the extraction
(or suppression) of all the sounds that belong to one or mul-
tiple desired AE classes. Although this problem could be ad-
dressed with a combination of source separation followed by
AE classification, this is a sub-optimal way of solving the prob-
lem. Moreover, source separation usually requires knowing the
maximum number of sources, which may not be practical when
dealing with AEs. In this paper, we propose instead a univer-
sal sound selection neural network that enables to directly se-
lect AE sounds from a mixture given user-specified target AE
classes. The proposed framework can be explicitly optimized to
simultaneously select sounds from multiple desired AE classes,
independently of the number of sources in the mixture. We ex-
perimentally show that the proposed method achieves promis-
ing AE sound selection performance and could be generalized
to mixtures with a number of sources that are unseen during
training.
Index Terms: sound extraction, deep learning, acoustic event

1. Introduction
In our daily lives, we are constantly immersed in acoustic scenes
or environments that are composed of mixtures of acoustic
events (AEs), which are often called polyphonic sounds [1, 2].
Depending on the situation, AEs can provide critical infor-
mation about our surroundings, e.g., klaxons when crossing a
street. They can also be annoying disruptions of our concentra-
tion, e.g., similar klaxons when working at home with an open
window. Our daily lives could be greatly improved if we could
develop hearable devices that select the AEs that we want to lis-
ten to depending on the situation. Toward this goal, we define
two problems: 1) AE sound selection and 2) AE sound removal.
The AE sound selection problem consists of the extraction of
the one or multiple desired AE sounds from the mixture, given
the user-specified target AE classes. When multiple desired AE
classes are selected, we output a signal that consists of the sum
of all the AEs from these classes. In this paper, we focus on the
AE sound selection problem, and briefly discuss the related AE
sound removal problem, which consists of the suppression of
the undesired AE sounds from the mixture. To the best of our
knowledge, this paper is the first attempt that explicitly tackles
these two problems.

Thus far, research on AE processing has focused on AE
detection/classification (AED) and AE separation (AES): sepa-
rating a mixture of AEs into individual AEs. AED detects the
boundaries and identifies the classes of each AE in a recording,
which may have many practical applications, e.g., for surveil-
lance [3, 4]. AEDs have been extensively researched, and rapid
progress in the field has been fueled by the recent DCASE chal-
lenge series [5] and the release of large datasets [6, 7]. Since
AED enables only to detect sounds without extracting them

from the acoustic scene, they are thus insufficient to solve the
AE selection problem that we target.

Recently, the separation of AEs using neural networks to
output signals for each AE in a mixture has received increased
interest [8, 9]. For example, the utterance-level permutation in-
variant training (uPIT) [10] framework, which was initially de-
veloped for speech processing, has been extended for the sep-
aration of AEs [8]. Although such an approach could separate
the AEs, it has two main drawbacks. First, the number of AEs
that it can separate is fixed by the number of network outputs. In
the case of speech separation, it would be reasonable to fix the
maximum number of outputs to two or three since in practice it
is rare that more relevant speakers speak within an audio seg-
ment. However, the number of AEs can be substantially larger
in an acoustic scene. Training a PIT-based separation network
for a larger number of outputs is challenging because of the ex-
ponential increase in the number of permutation possibilities in
the PIT loss. Another issue is the global permutation ambiguity
at the separation’s output, i.e., it is ambiguous which output cor-
responds to which source AE. Therefore, AES alone also fails
to solve the AE selection problem.

One way to achieve AE sound selection would be to com-
bine AES and AED. For example, with a cascade combination
of AES and AED obtained by performing AED after a PIT
based AES [11], the desired AEs could be picked up from the
outputs. This approach has three limitations. First, it inherits
the drawbacks of PIT-based separation in terms of the maxi-
mum number of AEs it can manage. Second, the AED per-
formance after separation may not be optimal because of the
possible processing artifacts or remaining undesired sounds in
the separation output. Finally, we need to perform AED on all
the separation outputs, which may become computationally ex-
pensive when dealing with many possible simultaneous AEs.

In this paper, we propose a neural network-based AE sound
selection approach, called Sound Selector, which directly ex-
tracts the desired AE sound from a mixture of AEs given a one-
hot vector representing the class of interest. Since the Sound
Selector outputs a single signal independently of the number
of AE sounds in the mixture, it does not require knowing the
maximum number of AEs like a PIT-based AES. Moreover,
the Sound Selector is explicitly optimized based on an objec-
tive function for AE sound selection. Finally, we extend the
Sound Selector to simultaneously extract AEs from multiple
AE classes, making it computationally efficient, which would
be important for future extensions of the approach to real-time
processing on hearable devices.

2. Proposed method
In this paper, we define two novel concepts, i.e., AE sound se-
lection and AE sound removal. In the following for discus-
sion simplicity, we focus on AE sound selection and describe
our proposed framework that extracts (selects) the desired AE
sounds from the observed mixture (Figure 2 for an example),
given the user-specified target AE classes.
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Figure 1: Overview of proposed Sound Selector architecture.

2.1. Sound selection framework

Let y ∈ RT be the T -length time-domain waveform of the
observed mixture. We assume that target-class vector o =
[o1, · · · , oN ]T is also given as input, where N denotes the num-
ber of total AE classes. For example, to extract the AE sounds
of the n-th AE class, o is a one-hot vector, where the element
corresponding to the target AE class is set to on = 1 and oth-
ers are set to oj = 0 ∀j 6= n. Given observed mixture y and
target-class vector o as inputs, the time-domain waveform of
target AE class x̂ is directly estimated by the sound extraction
network, as follows:

x̂ = DNN(y,o), (1)

where DNN(·) is the non-linear transformation of a deep
neural network (DNN). Motivated by the success of time-
domain speech separation/extraction frameworks [12, 13], we
adopt Conv-TasNet architecture, which demonstrated remark-
able speech separation performance. Thus, DNN(·) mainly
consists of stacked dilated convolution blocks.

Figure 1 shows a schematic diagram of the network ar-
chitecture of our proposed AE sound selector network, i.e., a
Sound Selector, which consists of an AE-class embedding layer
and a sound extraction network. Given y as input, the bottom
block of the sound extraction network generates an intermediate
representation of observed mixture H = {h1, · · · ,hF }, where
hf ∈ RD×1 denotes the feature at f -th frame, F is the total
number of frames and D is the dimension of the feature space.
In parallel, given o ∈ RN×1 as input, an AE-class embedding
layer generates target-class embedding c ∈ RD×1, which pro-
vides an encoded representation of the target AE class. These
intermediate representations H and c are combined into an in-
tegrated representation Z = {z1, · · · , zF }, which is passed to
the upper blocks of the sound extraction network to output only
the sounds from the target AE class. By integrating the target-
class embeddings c into the sound extraction network, the net-
work behavior can be adapted to extract the target AE sounds.

There are several ways that could be used to perform the
above integration procedure. In this paper, motivated by the
success in speaker adaptation [14] and target speech extrac-
tion [15], we adopt an elementwise product-based integration,
such as zf = hf � c ∀f .

2.2. Extension to multi-class simultaneous extraction

We above described AE sound selection for a single AE class.
However, the Sound Selector is required to extract arbitrary
sounds desired by a user depending on the situation. This can
include sounds from multiple AE classes.

To extract the sounds of multiple AE classes, we could it-
eratively apply the extraction module for all the target classes
and then sum up the extracted signals to reconstruct the desired
output. However, such an iterative approach naturally increases
the computational cost as the number of target class increases.

To alleviate the above issue, we propose a multi-class
simultaneous extraction scheme that extracts multi-class AE
sounds in a one-pass manner and makes the computational cost
constant as the number of target classes increases. In a multi-
class selection setting, the network output remains a single
signal, which includes all the sounds belonging to the target
classes.

In this work, we hypothesize that the network behavior can
be adapted to extract not only a single target AE class but also an
arbitrary combination of multiple target AE classes. To inform
the sound extraction network about the multiple AE classes, we
compute target-class embedding c, as follows:

c = Eo =

N∑
n=1

onen, (2)

where E = [e1, · · · , en, · · · , eN ] is a trainable embedding ma-
trix and en ∈ RD×1 represents the embedding vector of the
n-th AE class. E is jointly optimized with the other parts of
the network. This formalization corresponds to having a target-
class vector o set to a n-hot vector, where the n elements that
correspond to the target AE classes are 1 and the others are 0.

2.3. Training procedure

We assume that a set of input and target features {y,o,
{xn}Nn=1} is available for training the model, where xn ∈ RT

is the target sound signal of the n-th AE class. In general, the
number of AE sounds in the mixture is lower than the number
of total AE classes N . We thus set the AE sounds of classes xn

that do not exist in the mixture at zero signals.
To realize the proposed multi-class simultaneous extrac-

tion, we dynamically generated target-class vector o, where one
or more elements are 1 and the others are 0, and also generated
the corresponding reference signal, as follows:

x =

N∑
n=1

onxn. (3)

To retain the scale information of the AE sounds, we
adopted the scale-dependent signal-to-noise ratio (SNR) [16] as
the training objective. The SNR loss L is expressed as follows:

L = 10 log10

(
‖x‖2

‖x− x̂‖2

)
⇔ −10 log10

(
‖x− x̂‖2

)
, (4)

where x̂ denotes the estimate of the target signal computed from
y and o. For the baseline PIT-based separation, we use the
equivalent log mean squared error (MSE) criterion to enable
training when the targets are zero signals.

2.4. Sound removal problem

The sound removal problem is the opposite of the sound selec-
tion problem. Sound selection aims to extract the sounds of the
selected AE classes, while sound removal aims to suppress the
sounds of the selected AE classes from the observed mixture.

We consider two variants to realize a sound removal mech-
anism: 1) direct estimation and 2) indirect estimation. In the
former scheme, we build a sound removal network by chang-
ing the reference signal in Eq (3) to removal target x = y −
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∑N
n=1 onxn. In the latter scheme, we use the Sound Selector

to extract the sounds to suppress and generate the removal out-
put as x̂ = y − x̂Sel., where x̂Sel. denotes the estimate by the
Sound Selector.

3. Related work
We base our proposed AE Sound Selector on target speech ex-
traction framework [15, 17], which outputs only a target speech
given the target speaker’s query. Recently, a similar query-
based extraction framework was also proposed in music source
separation task [18]. The advantage of this framework is that
it can directly optimize the source extraction objective with-
out requiring knowledge of the maximum number of sources
in the mixture. In this work, we introduce learned class em-
beddings instead of source embeddings that are derived from
sound examples [15, 17, 18], which allow the extraction of AEs
depending on user-specified target classes. We also extend the
approach to simultaneously extract AEs from multiple classes,
which enables to directly optimize it for the extraction of multi-
ple user-specified target classes, unlike [15, 17, 18] that are op-
timized for only a single target.

Combination of AES and AED has been investigated for
improving AED performance for polyphonic sounds [19, 20].
For example, in recent DCASE challenges, non-negative matrix
factorization (NMF)-based separation [21,22] was often used as
a front-end for AED, e.g., [23, 24]. Besides, [9] investigated an
AES and AED combination to improve separation performance
but not to realize AE sound selection. It derived an iterative
PIT-based separation framework, that uses the AED class pos-
teriors of all the separated signals as auxiliary inputs to a sec-
ond separation pass. This approach inherits the limitations of
the PIT-based separation frameworks, i.e., where the maximum
number of sources in the mixture must be fixed.

Quite recently, [25] investigated using dataset with weak-
labels for AES. In concurrent and independent work, they pro-
posed a similar framework for extracting sounds in a mixture
based on condition vector derived from an AED and evaluated
their system on mixtures of 2 classes. Compared to [25], we fo-
cus on the AE sound selection/removal and investigate explicit
extraction of multiple AE classes simultaneously for both train-
ing and inference. Besides, we evaluate our proposed scheme
for extraction of up to four AE classes simultaneously on mix-
tures of up to seven AE classes. In future work, we will include
an investigation of using weak-labels for training [25, 26].

4. Experiments
4.1. Dataset

To evaluate the effectiveness of our proposed method, we cre-
ated datasets of simulated sound event mixtures based on the
Freesound Dataset Kaggle 2018 corpus (FSD) [6], which con-
tains audio clips from 41 diverse AE classes, such as human
sounds, object sounds, musical instruments, etc [6]. We in-
cluded stationary background noise to the mixtures using noise
samples from the REVERB challenge corpus (REVERB) [27].
We created two datasets: 1) three-class mixtures (Mix 3) and
2) three to five-class mixtures (Mix 3-5). The mixtures in Mix
3 contain the AEs of three classes within an audio clip, and
the mixtures in Mix 3-5 contain the AEs of three, four, or five
classes.

We generated six-second mixtures by randomly extracting
six audio clips of 1.5 to 3 seconds from the FSD corpus and
pasting (adding) them to random time-positions on top of the
six-second background noise. With this way of constructing
the data, different sounds from the same AE class can occur

Table 1: Baseline SDR [dB] for mixture signals.

# class for # class in Mix.
Dataset Sel. 3 4 5 mean

Mix 3 1 -3.6 - - -3.6

Mix 3-5 1 -3.3 -5.9 -7.2 -6.0
2 3.5 0.0 -2.1 -0.2
3 21.8 5.9 2.0 6.3

up to twice per mixture. We created sound event mixtures by
utilizing Scaper’s functionality [28], “generate from jams(·)”,
which is widely used to create dataset in the SED community,
where ref db was set at -50 and snr was set randomly between
15 and 25 dB for each foreground event. In this experiment, we
downsampled the sounds to 8 kHz to reduce the computational
and memory costs.

The training and development sets consist of 50,000 and
10,000 mixtures, respectively. The audio clips for these sets
were randomly selected from the training sets in the FSD and
REVERB corpora. The test set consists of 10,000 mixtures
based on the test set in the FSD and REVERB corpora. For
each audio clip, we also randomly generated target-class vector
o that represents the desired AE classes.

4.2. Configurations

For all the experiments, we adopted the non-causal Conv-
TasNet-based network architecture, which consists of stacked
dilated convolution blocks. By following the notations of [12],
we set the hyperparameters as follows: N = 256, L = 20, B =
256, H = 512, P = 3, X = 8, and R = 4. We also set the dimen-
sion of embedding layer D at 256. For the integration layer, we
adopted element-wise product-based integration and inserted it
after the first stacked convolution block (Figure 1).

We adopted the Adam algorithm [29] for optimization with
an initial learning rate of 0.0005 and used gradient clipping [30].
We stopped the training procedure after 200 epochs.

As the evaluation metrics, we used the scale-invariant
signal-to-distortion ratio (SDR) of BSSEval [31]. In the ex-
periment, we conducted three types of evaluations for 1) single-
class selection, and multi-class selection with 2) two classes,
and 3) three classes. For each mixture, three AE classes {n1,
n2, n3} were pre-defined. For the multi-class (I-class) selec-
tion task, the reference signal for the SDR calculation is given
by x =

∑I
i=1 xni , where I is the number of target AE classes,

i.e., I ∈ {1, 2, 3} in this experiment.
Table 1 shows the average SDR scores of the mixture sig-

nals, which are used as the baseline to compute the SDR im-
provement scores. Here, “# class for Sel.” denotes the number
of AE classes, i.e., I , defined as the selection target, and “# class
for in Mix.” denotes the subsets of the evaluation dataset with
three, four, or five AE classes in the mixture.

4.3. Results

4.3.1. Evaluation: single-class selection

In the first experiment, we evaluated the single-class extraction
task on Mix 3 and Mix 3-5 tasks. Table 2 shows the SDR im-
provement of the PIT-based system and our proposed Sound
Selector. For a fair comparison, we employed a similar network
architecture for both the PIT-based and our proposed systems.
With the PIT-based system, we assumed oracle target class se-
lection (OS), which selects one of the output sources that shows
the highest SDR score as the target AE sound. The PIT-based
networks have three and five output channels for the Mix 3 and
Mix 3-5 tasks, respectively. They are trained to output zero sig-
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Table 2: SDR improvement [dB] for single-class selection.

# class in Mix.
Method Dataset 3 4 5 mean

PIT + OS Mix 3 12.0 - - 12.0
Sound Selector Mix 3 11.2 - - 11.2

PIT + OS1 Mix 3-5 9.6 9.1 8.5 9.0
Sound Selector Mix 3-5 8.8 10.5 11.1 10.5

Table 3: SDR improvement [dB] for multi-class selection.

# class for # class in Mix.
Method Sel. 3 4 5 mean

Iterative 2 4.4 6.7 8.0 6.9
Simultaneous 2 5.1 6.8 7.7 6.9

Iterative 3 -11.0 2.7 5.2 2.0
Simultaneous 3 -4.9 3.9 5.0 3.3

nals when the number of sources in the mixture is fewer than
the output channels [32].

Table 2 shows that the SDR score of the Sound Selector
is slightly lower than the PIT+OS for Mix 3 task, but the pro-
posed Sound Selector stably worked better than the PIT+OS for
a more realistic Mix 3-5 task, i.e., where the number of classes
in the mixture is variable. These results demonstrate that the
proposed architecture can jointly solve the AES and AED tasks.

Note that the scores of the PIT+OS would correspond to
the upper bound performance with the oracle AE classifier. In
practice, performing AED on top of the separation would be dif-
ficult due to potential distortion or remaining undesired sounds
in the signals2.Therefore, if we adopt the actual AE classifier,
the scores of the PIT+OS will certainly be degraded. Evalua-
tion with such a real classifier would be important future work.

4.3.2. Evaluation: multi-class selection

In the second experiment, we evaluated the multi-class extrac-
tion task on the Mix 3-5 task. Table 3 shows the SDR im-
provement of the iterative and simultaneous extraction schemes.
Here, “Simultaneous” denotes the proposed multi-class simul-
taneous extraction scheme, as described in Section 2.2. The
“Iterative” scheme iteratively applies single-class extraction for
each of the target AE classes and sums up all of the extracted
sounds.

Table 3 shows that the “Simultaneous” extraction scheme
works comparably or better than the “Iterative” scheme, regard-
less of its lower computational cost. These results suggest that
the proposed AE selection concept could be achievable with a
constant computational cost.

We observe that the SDR improvement is negative when
both “# class for Sel.” and “# class for Mix.” are three. This
is due to the high baseline SDR (21.8 dB in Table 1), because
the reference signals closely resemble the mixtures in this set-
ting. Note that for the “Simultaneous” scheme, although SDR is
degraded by 4.9 dB, the absolute SDR remains high (16.9 dB),
showing that the output signal is not significantly distorted.

Due to space limitations, we are unable to report the de-
tailed results on the sound removal experiments, but we con-
firmed that both direct and indirect estimation schemes per-

1We observed that PIT-based training with SNR loss failed to output
the correct number of sources in the mixture when trained on the Mix
3-5 set. Additional investigations with alternative training objectives or
curriculum learning may be required to prevent this issue.

2Even for clean signals, the MAP@3 score is about 95 % on the
same FSD corpus [6] and the top-1 accuracy would be even lower.

Figure 2: Mixture with AEs from 7 AE classes, the reference sig-
nals (Ref.), and the signals estimated with the proposed Sound
Selector (Est.) for 2 (left) and 4 (right) target AE classes.

formed equivalently with SDR improvement of about 6 dBs.

4.3.3. Analysis of generalization capability

Finally, we explored the generalization capability of our ap-
proach to conditions unseen during training, i.e., longer mix-
tures with more AE classes and more target classes for selec-
tion. We created an additional test set consisting of 200 home
office-like mixtures of ten seconds containing AEs from seven
classes. The target AE classes are set for all mixtures to “knock,
telephone” for two-class (I = 2) and “knock, telephone, key-
board, meow” for four-class (I = 4) cases.

Figure 2 shows an example of sound selection for a AE
mixture3, where ”Ref“ and “Est” denote reference and esti-
mated signals, respectively. The results were obtained with the
multi-class simultaneous extraction scheme. From the figure,
we confirmed that our proposed system successfully extracts
the sounds of the multiple target AE classes, even if seven-
class mixtures and four-class simultaneous extraction were not
included in the training stage.

Figure 2 shows only one example, but we observed that the
average SDR improvements on this set are 8.5 dB for two-class
and 5.3 dB for four-class cases. This result suggests that the
proposed framework has the potential to generalize to unseen
conditions.

5. Conclusions
In this paper, we introduced two novel concepts, i.e., AE sound
selection and removal problems. Solving these problems would
open a path toward hearable devices that allows the selection
of AEs to which we want to listen. We proposed a sound selec-
tion neural network, i.e., Sound Selector, which exploits a n-hot
representation of the user-specified target AE classes to simulta-
neously output sounds from these classes. Experimental results
showed that the proposed Sound Selector successfully extracts
the multiple AE sounds simultaneously and it has the potential
to generalize to an unseen number of classes in the mixture and
to the extraction of an arbitrary number of classes.

Future work will include investigations using a larger
dataset with more AE classes, which would be essential for
further evaluating the generalization capability of the proposed
method, as well as extension to online processing and training
with weak-labels.

3Audio examples of the proposed sound selection/removal system
will be available online [33]
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