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Abstract
Target-speaker speech separation, due to its essence in industrial
applications, has been heavily researched for long by many. The
key metric for qualifying a good separation algorithm still lies
on the separation performance, i.e., the quality of the separated
voice. In this paper, we presented a novel high-performance
time-domain waveform based target-speaker speech separation
architecture (WaveFilter) for this task. Unlike most previous
researches which adopted Time-Frequency based approaches,
WaveFilter does the job by applying Convolutional Neural Net-
work (CNN) based feature extractors directly on the raw Time-
domain audio data, for both the speech separation network and
the auxiliary target-speaker feature extraction network. We
achieved a 10.46 Signal to Noise Ratio (SNR) improvement on
the WSJ0 2-mix dataset and a 10.44 SNR improvement on the
Librispeech dataset as our final results, which is much higher
than the existing approaches. Our method also achieved an
4.9 SNR improvement on the WSJ0 3-mix data. This proves
the feasibility of WaveFilter on separating the target-speaker’s
voice from multi-speaker voice mixtures without knowing the
exact number of speakers in advance, which in turn proves the
readiness of our method for real-world applications.
Index Terms: target-speaker speech separation, time-domain
feature extraction

1. Introduction
Robust automatic speech recognition in realistic conditions of-
ten requires speech separation. Because of the importance of
this research topic, there has been a great interest recently in
using deep learning approaches to solve this problem. Most of
the methods first use the Short-Time Fourier Transform (STFT)
to transform the mixture signal into a time-frequency domain
representation, then do separation based on it. Speech separa-
tion approaches such as Deep Clustering [1] and Permutation
Invariant Training (PIT) [2] predict T-F bin masks of the indi-
vidual sources where the clean source spectrograms are used as
the training target. The individual sources can then be recov-
ered by multiply mask with the mixture spectrograms. In recent
years, the performance of time-frequency mask methods has
significantly advanced with more sophisticated mask estima-
tion approaches [3, 4]. However, these time-frequency-mask-
prediction-based methods have several shortcomings. Firstly,
the number of sources in the mixture needs to be known in ad-
vance when estimating mask. Secondly, reconstruction of the
phase of the clean sources is a nontrivial problem, and the er-
roneous estimation of the phase is enforcing an upper bound on
the accuracy of the source recovery.

In most cases, we might not want to separate all compo-
nents of a mixture but rather to extract the speech of one tar-
get speaker. Some related literature exists for target-speech
separation. For example, in [5], the authors achieved impres-

sive results by training two separate neural networks: a speaker
recognition network produces speaker-discriminative embed-
dings and a spectrogram masking network that takes both noisy
spectrogram and speaker embedding as input, and produces a
mask. However, a solution like that is insufficient because of
the non end-to-end nature of their system. In [6, 7], the authors
proposed SpeakerBeam which is an end-to-end target speaker
extraction neural network architecture. An adaptation layer is
used to combine the auxiliary feature extraction network and the
speech separation network, and both of them are being trained
simultaneously. Despite it is an end-to-end system, its perfor-
mance still has an upper bound because of the nontrivial phase
problem.

In order to break the upper bound of conventional
time-frequency magnitude mask approaches, in [8], a fully-
Convolutional Time-domain Audio Separation Network (Conv-
TasNet), which directly utilizes raw waveform as the network
input, has been proposed. It consists of three processing stages:
encoder, separation and decoder. The encoder and decoder part
are to simulate the process of STFT and iSTFT while the sepa-
ration part calculates a multiplicative function (i.e., a mask) for
each of the target sources. However, this method is designed for
separating all sources in the mixture while in a real-world envi-
ronment, the exactly number of sources in the mixture is often
unknown.

As there are known drawbacks of time-frequency mask ap-
proaches, we introduce a novel speaker-dependent speech sep-
aration neural network architecture that utilize raw waveforms
solely as input in this paper. Instead of generating speaker em-
bedding from speatrogram, we directly extract speaker char-
acteristics from the speech waveform spoken by the target-
speaker. This process is similar to speaker verification. In [9],
the authors proposed the RawNet which is an advanced end-
to-end deep neural network using raw waveforms for text-
independent speaker verification. The results indicate that di-
rectly extract embeddings from raw waveform can achieve
a similar or even better performance than i-vector or other
handcraft-feature-based method.

We present experimental results on publicly available
WSJ0-2mix and WSJ0-3mix datasets, showing that this new ar-
chitecture performed better than SpeakerBeam and PIT-based
blind source separation method. To verify the generalization
capability of the model, we also created a new dataset from Lib-
riSpeech which contains more speakers in training and testing
sets. The results on new dataset shows that proposed model also
achieves better performance than SpeakerBeam.

The rest of this paper is organized as follows. We introduce
the propose model in section 2. We describe the experimental
procedures in section 3. We show the experimental results and
analysis in section 4 and concludes the paper in section 5.
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Figure 1: Schematic diagram of proposed model

2. Problem Definition
The problem of single-channel target speech separation is de-
fined as estimating the target speaker source st(t) from C
speaker sources s1(t), . . . , sc(t) ∈ R1×T , given the mixture
waveform signal x(t) ∈ R1×T , where

x(t) =

C∑
i=1

si(t), (1)

In most traditional speech separation methods, Short time
Fourier transform (STFT) and inverse Short time Fourier trans-
form (iSTFT) are used to covert time domain signal into time-
frequency domain. In contrast with these conventional methods,
we aim to directly estimate st(t) from x(t) in time domain.

3. Approach
The schematic diagram of the system is shown in Fig. 1. The
overall system is comprised of two components: the feature ex-
traction network and the speech separation network. The speech
separation network acts as the main speech separator, and the
feature extraction network extracts the target-speaker charac-
teristic from the auxiliary waveform to aid the main separation
network. Firstly, two encoders with the exact same configura-
tion are used to transform the input mixture and the auxiliary
waveform into intermediate feature spaces. The speech sep-
aration network then takes both embedding from the mixture
waveform and the output of the feature extraction network as
the input to estimate a mask for the target source. The separated
speech is recovered by converting the masked encoder features
using a decoder module. In this section, we will describe the
details of each of the steps.

3.1. Feature extraction module

The purpose of the feature extraction module is to extract
speaker characteristics and transform them into an intermediate
space using several residual blocks. Firstly, the auxiliary speech
of the target speaker is passed to the encoder which uses an 1-D
convolution layer to convert the 1-dimensional signal into ma-
trix representations. After encoding, various residual blocks are
utilized to further process the encoded signal. The design of the
residual block is based on the recent work in [9], which is devel-
oped for speaker verification tasks. Fig. 2 shows the details of
each residual block. Each block consists of 2 CNN operations,
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LeakyReLU

Normalization

Input

Output

Figure 2: Residual block

with nonlinear activation functions and normalization added be-
tween each two convolution operations.

Motivated by the temporal convolutional network [10, 11,
12], we stack 3 residual blocks together with exponentially in-
creasing dilation factors 1,2,4. The input to each block is zero
padded accordingly to ensure the output length is the same as
the input. The output of each residual block is used to adapt
speech separation module to focus on the target speech in the
mixture.

3.2. Speech separation module

The speech separation module is based on the related work [8]
in which the authors proposed Conv-TasNet, which achieves
significant performance on single channel time-domain speech
separation. As shown in figure 1, the neural networks takes two
input: the raw waveform of mixture signal and the speaker fea-
tures computed by the residual block of the feature extraction
network. The encoder structure is the same as it is in the feature
extraction module.

Following the best performed configuration in Conv-
TasNet, each dilated 1-D conv block consists of 8 convolu-
tion layers with nonlinear activation functions and normaliza-
tion layers inserted between each two convolution operations.
The output of residual block is combined with the input of the
first convolution layer of each dilated 1-D conv block using an
element-wise multiplication. The dilation factors increase ex-
ponentially to ensure a sufficiently large temporal context win-
dow to take advantages of the long-range dependencies of the
speech signal. The target speech then reconstructed by 1-D
transposed convolution operations in the decoder.

3.3. Training target

Following the recent literature on deep learning based speech
separation tasks, we employ the Scale-Invariant Source-to-
Noise Ratio (SI-SNR), which has commonly been used as the
evaluation metric for source separation tasks, as the training cri-
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terion replacing the standard source-to-distortion ratio (SDR)
[13]. SI-SNR is defined as:

enoise = ŝ− starget (2)

SI-SNR = 10 log10

‖starget‖2

‖enoise‖2
, (3)

where starget = 〈ŝ,s〉s
‖s‖2 . ŝ ∈ R1×T and s ∈ R1×T represent the

estimated and reference signals, respectively, and ‖ s ‖2 = 〈s, s〉
denotes the signal power. For SI-SNR, the scale invariant is
guaranteed by normalizing estimated and reference signals to
zero mean.

4. Experimental Setup
In this section, we describe our experimental setup: the datasets
used to train speech separation and feature extraction network
also the details of two components of the system separately, as
well as the metrics to assess the systems.

4.1. Data

4.1.1. WSJ0-mix data

We use the WSJ0-2mix dataset and WSJ0-3mix dataset which
were introduced in [14] since it has been widely used for single-
channel speech separation tasks and related works. A 30-hour-
long training set and a 10-hour-long validation set of two-
speaker mixtures were generated by randomly selecting utter-
ances by different speakers from the WSJ0 training set si tr s,
and mixing them at various SNR between 0 dB and 5 dB. The
5h test set was generated similarly using utterances from sixteen
speakers from the WSJ0 development set si dt 05 and evalua-
tion set si et 05. We randomly selected a clean utterance of the
target speaker different from that in the mixture to be the refer-
ence utterance.

4.1.2. Librispeech 2 mixture data

To further prove the generalization capability of WaveFilter,
we created a different corpus. The corpus consists of simu-
lated mixtures of 2 speakers selected from the corpus of Lib-
rispeech [15]. We used the training and the development sets
which contains 2338 speakers and 73 speakers respectively. The
data in the Librispeech dataset have relatively long silences at
the beginning and the end of each clip and these silences are
trimmed to keep consistency with the WSJ data. As for the gen-
eration of the data, we first randomly select one amongst the 2
speakers as the target speaker and the other as the interference
speaker. Then we choose an utterance from each speaker and
overlay them to create the mixture input. The utterance of target
speaker is the ground truth. A reference utterance of the target
speaker different from the ground truth is selected as auxiliary
input. According to the above method, we created a 45-hour-
long training set and a 5-hour-long test set. This corpus is more
challenging because it contains more speakers.

4.2. Network configuration

The inputs of the speech separation and the feature extraction
network are the time-domain mixture utterance and the auxil-
iary utterance respectively. The utterance was encoded to an
intermediate representation by using a 1-D convolution layer
which has 512 filters with 32ms window length and 16ms win-
dow shift. After that, a 1× 1-conv layer maps the encoded 512

dimensional features into 128 dimensions to be the input of the
Conv-Tasnet. All input utterances are segmented into 4 seconds
each and are resampled at 8 kHz.

We utilized the network architecture shown in Fig. 1 for all
experiments. Following the configuration of the Conv-TasNet,
the speech separation network consists of 3 1-D Dilated Conv
Blocks, with each Dilated Conv Block being a stack of 8 1D-
Conv blocks. The detailed structure of each 1D-Conv block is
an exact adoption from the original paper, and can be found
in [8]. For feature extraction network, it consists of 3 Resid-
ual block which has shown in Fig. 2. For the first conv1d layer
in residual block it takes 128-dimension inputs and generates
512-dimension outputs. LeakyReLU nonlinear activation func-
tion with the negative slope parameter being 0.3 and a normal-
ization layer are added between two convolution layers. The
second conv1d layer takes 512-dimension inputs and generate
512-dimension outputs which are used as the inputs to each 1-
D Dilated Conv Block in Conv-TasNet. The dilation and zero
padding parameters of each residual block are exponentially in-
creased from 1 to 4. The decoder consist of a conv1d transpose
layer which converts the intermediate representation of the ut-
terance back to time domain.

For training all networks, we use the Adam optimizer [16]
with an initial learning rate of 0.0001 and train 200 epochs for
the WSJ dataset, and 150 epochs for the Librispeech dataset.
We did not use dropouts.

4.3. Evaluation

We use two metrics: Source to Distortion Ratio (SDR) and
Short Term Objective Intelligibility (STOI) [17] as the evalu-
ation criteria for our proposed model.

4.3.1. Source to distortion ratio

SDR was defined in [13] and becomes a very popular metric to
evaluate the performance of source separation system. It is an
energy ratio expressed in decibels (dB) and defined as:

SDR = 10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(4)

where einterf , enoise and eartif are respectively the interfer-
ences, noise, and artifacts error terms. Thus, a higher number
denotes a better performance.

4.3.2. Short term objective intelligibility

Short-time objective intelligibility (STOI) is a metric that is
closely related to the human auditory perception and widely
used in speech separation researches as the evaluation criterion.
STOI is a function of a TF-dependent intermediate intelligibil-
ity measure, which is based on the correlation between temporal
envelopes of the clean and degraded speech in short-time (382
ms) segments. It has been commenly used as metrics in many
related works. For example, speech enhancement [18], speech
separation [19], as well as speech dereverberation and denoising
[20].

5. Results
5.1. WSJ0 2 mixture data

Table 1 presented the performance comparison of WaveFilter
with some of the top performing baseline models on the WSJ0
2-mix dataset. We ran the experiments on the exact same dataset
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Table 1: SDR and STOI results for WSJ0-2mix data

∆SDR ∆STOI

PIT 8.6 0.101

SpeakerBeam FA 10 9.4 0.106
SpeakerBeam FA 20 9.6 0.107
SpeakerBeam FA 30 9.7 0.110

SpeakerBeam SA 9.6 0.132

WaveFilter 10.46 0.152

Table 2: SDR and STOI results for Librispeech-2mix data

∆SDR ∆STOI

SpeakerBeam SA 9.23 0.138

WaveFilter 10.44 0.164

as the baseline models, which are presented in [6] and [2], to
have a fair comparison. We can see there is a clear advantage of
WaveFilter over the baseline models in both SDR improvement
and STOI improvement.

5.2. Librispeech 2 mixture data

To further enhance the credibility of our results, we also ran ex-
periments for both the SpeakerBeam baseline model and Wave-
Filter on the Librispeech 2-mixture data for performance com-
parison. Table 2 presented the results. We once more ob-
served a significant improvement in both SDR and STOI met-
rics for WaveFilter. However do take note that this result for the
SpeakerBeam model is not written in the original paper, instead
that is the result of our own reproduction of their experiment on
the Librispeech 2-mixture dataset.

5.3. WSJ0 3 mixture data

We also ran experiments using WaveFilter on the WSJ0 3-
mixture dataset. The result presented in Table 3 is obtained
by feeding no prior knowledge of the exact number of speakers
into WaveFilter. We do see a decent SDR and STOI improve-
ment of the resultant separated speech, and this demonstrated
WaveFilter’s capability in target-speaker voice extraction in a
multi-speaker environment.

5.4. Example data

To better illustrate the effectiveness of WaveFilter, We picked
a set of audio from our experimental results on WSJ0 2-mix
dataset in Fig. 3 as examples. Fig. 3a is the spectrum of the mix-
ture input for our separation algorithm, Fig. 3b is of the taget-
speaker’s original voice and Fig. 3c is of the extracted voice.
We can see a clear distinction between the mixture clip and the

Table 3: SDR and STOI results for WSJ0-3mix data

∆SDR ∆STOI

WaveFilter 4.9 0.135
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Figure 3: Example data spectrum

extracted clip, and a noticeable similarity between the original
clip and the extracted clip, which proves that WaveFilter suc-
ceeded in recovering the target-speaker’s original voice from
the mixture to a large extent.

6. Conclusions and Future Work
In this paper, we presented a new model for the task of target-
speaker voice separation from a voice mixture. The model is
proven by experiments to be more effective than any existing
solutions in the field. The full time-domain-based nature gives
WaveFilter a higher degree in the end-to-endness, and thereby
increase the upper bound of the performance as it makes fewer
assumptions. The multi-speaker mixture compatibility broad-
ens the scope of possible applications of WaveFilter in real-
world usages.

Of course there is still room for improvements. One possi-
ble future work might be to improve the separation performance
on mixture with more than 3 speakers as it can be seen that the
performance on the 3-mixture dataset is relatively low under the
current setting, to get WaveFilter more prepared for industrial
mass implementation.
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