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Abstract
Speech recognition technology in single-talker scenes has

matured in recent years. However, in noisy environments, es-
pecially in multi-talker scenes, speech recognition performance
is significantly reduced. Towards cocktail party problem, we
propose a unified time-domain target speaker extraction frame-
work. In this framework, we obtain a voiceprint from a clean
speech of the target speaker and then extract the speech of the
same speaker in a mixed speech based on the previously ob-
tained voiceprint. This framework uses voiceprint information
to avoid permutation problems. In addition, a time-domain
model can avoid the phase reconstruction problem of traditional
time-frequency domain models. Our framework is suitable for
scenes where people are relatively fixed and their voiceprints
are easily registered, such as in a car, home, meeting room, or
other such scenes. The proposed global model based on the
dual-path recurrent neural network (DPRNN) block achieved
state-of-the-art under speaker extraction tasks on the WSJ0-
2mix dataset. We also built corresponding low-latency mod-
els. Results showed comparable model performance and a much
shorter upper limit latency than time-frequency domain models.
We found that performance of the low-latency model gradually
decreased as latency decreased, which is important when de-
ploying models in actual application scenarios.
Index Terms: cocktail party problem, speaker extraction, low-
latency, time domain

1. Introduction
Automatic speech recognition (ASR) systems have achieved
impressive results for single-talker speech recognition tasks.
However, such systems remain unsatisfactory when under com-
plex auditory scenes, especially in noisy and multi-talker envi-
ronments, i.e., the so-called cocktail party problem [1, 2].

Many researchers have attempted to solve this issue us-
ing traditional methods, such as computational auditory scene
analysis (CASA) [3] and non-negative matrix factorization
(NMF) [4, 5], or deep learning technology, such as deep clus-
tering (DPCL) [6], deep attractor network (DANet) [7], per-
mutation invariant training (PIT) [8], time-domain audio sep-
aration network (TasNet) [9, 10], Wavesplit [11] and Voice-
Filter [12]. DPCL maps time-frequency features into high-
dimensional space and then uses the clustering algorithm to
cluster the mixed speech features into several speakers. DANet
obtains each speaker’s voiceprint feature vector from mixed
speech, which is then used as the center point for clustering. Ex-
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cluding DPCL and DANet, more models use a spectral mask-
based method, i. e., they first calculate the short-time Fourier
transform (STFT) features of the mixed speech [13], then gen-
erate a spectral mask from the amplitude spectrum features, and
use the phase spectrum of mixed speech to reconstruct a clean
signal.

Researchers hope that the order of model output does not
affect performance. Yu et al. [8] first proposed PIT technol-
ogy to minimize reconstruction errors under minimum energy
ranking. Various models used PIT afterwards [10, 14, 15, 16].
However, the specific number of speakers in mixed speech must
be precise and known in advance, and the speaker label of the
output channel cannot be obtained directly [7], i. e., permuta-
tion problem [8]. Under actual application scenes, we usually
do not know the specific number of speakers and are not nec-
essarily interested in everyone, rather a small number of people
in the crowd. Therefore, the speaker extraction model may be
more suitable for scenes at a cocktail party. Xu et al. [17] uti-
lized a reference speech to extract voiceprints to help track a
target speaker, and then VoiceFilter [12] trained voiceprint net-
work with a large speech dataset. However, VoiceFilter did
not optimize the voiceprint network jointly with the overall
model, which may degrade performance. Xu et al. [18] opti-
mized the voiceprint network and speaker extraction network
jointly, but performance was not better than the speech separa-
tion model [10].

On the other hand, actual application scenarios have higher
requirements for the separation model’s real-time processing
capability, e. g., front-end of ASR and hearing aids. How-
ever, the upper limit of real-time processing of time-frequency
domain models, e. g., SBF-MTSAL-Concat [18] and Voice-
Filter [12], are limited by the STFT frame length. That is,
the time-frequency domain model’s ideal latency is equal to
the STFT frame length, 32 ms in general. Although Wang et
al. [19] reduced the model delay by shortening the STFT frame
length from 32 ms to 8 ms, performance degradation was se-
vere. Luo et al. [10] proposed a time-domain model (TasNet)
that replaced STFT and inverse STFT with a trained encoder
and decoder pair. Instead of mapping waveforms into the time-
frequency domain, the encoder maps them into a new tempo-
ral resolution space. This coding method improves modeling
granularity, removes the constraints between time precision and
feature dimension size in STFT, and avoids phase reconstruc-
tion problems of time-frequency domain models [20, 21]. Re-
cently, time-domain speech separation models, such as the dual-
path recurrent neural network (DPRNN) [22] and Wavsplit [11],
have obtained the new state-of-the-art on the benchmark dataset
for speech separation task. Xu et al. [23] also proposed a time-
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domain model, SpEx, for speaker extraction task. However,
SpEx uses future information to predict the current time step
mask, i. e., not real-time, and its performance is worse than ours.

In this paper, we propose a unified framework for speaker
extraction. The framework aims to use a target speaker’s ref-
erence speech to obtain a voiceprint clue, which is then used
to extract the target speaker’s speech from noisy speech. The
novelty of this paper includes the following:

1. We proposed a unified framework based on voiceprint
for speaker extraction tasks, which can be easily up-
graded by updating submodules. We built the global
models and low-latency models under the framework.
The framework worked well under the different settings
and exhibited robustness;

2. Our model achieved state-of-the-art results on bench-
mark datasets for speaker extraction tasks with fewer pa-
rameters;

3. We used interfering speech as a supervision signal in
the speaker extraction paradigm, which helped separate
the target speaker’s speech and improved model perfor-
mance.

This paper is organized as follows. The proposed speaker
extraction framework and specific models are introduced in de-
tail in Sec. 2. Experimental evaluation is presented in Sec. 3.
Finally, Sec. 4 summarizes this paper.

2. Proposed framework
Our proposed framework is composed of four main modules:
i. e., voiceprint encoder, speech encoder, speech decoder, and
target speaker extraction module, as shown in Fig. 1. We first in-
put mixed speech composed of the target and interfering speak-
ers’ speech, and another reference speech of the target speaker
into the framework. The voiceprint encoder processes the ref-
erence speech to generate the target speaker’s voiceprint. The
speech encoder processes the mixed speech to obtain mixed
speech features. The voiceprint and mixed speech features are
taken as inputs for the speaker extraction module. With the tar-
get speaker’s voiceprint as a clue, the module tracks and extracts
the target speaker’s feature mask in the mixed speech features.
After that, the mask multiplies the mixed speech features to ob-
tain the features of the target speaker. Finally, the speech de-
coder decodes the target speaker’s features to generate the target
speaker’s pure voice.

2.1. Voiceprint encoder

Firstly, STFT is performed on the reference speech to obtain
time-frequency features. Two layers of bidirectional long short-
term memory (BiLSTM) are then adopted to process the mag-
nitude of time-frequency features and perform mean-pooling to
compress the time dimension and obtain a vector. The linear
layer performs a dimensional transformation on the vector to
match the feature size of the mixed speech. This vector is then
used as the voiceprint of the target speaker.

2.2. Speech encoder and decoder

Time-frequency domain coding, e. g., STFT, and time-domain
coding are commonly used methods in speech separation and
speaker extraction models. Time-domain coding has many ad-
vantages over time-frequency domain coding, such as trainable
parameters, shorter frame length, and no phase reconstruction
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Figure 1: Unified speaker extraction framework.

problem [20]. Therefore, we adopted time-domain coding here,
as seen in Fig. 1. We used convolutional layers and transposed
convolutional layers as the encoder and decoder, respectively.
The encoder encodes waveforms into speech features, and the
decoder reconstructs waveforms from speech features.

2.3. Speaker extraction module

A speaker extraction module should possess strong time-series
data processing capabilities. We adopted a deep dilated tempo-
ral convolutional network (TCN) [24, 25] and DPRNN as the
main structure of the module, which have been proven effective
in speech separation tasks [10, 22].

Similar to the separation module in Conv-TasNet [10],
our TCN speaker extraction module consists of stacked one-
dimensional (1-D) dilated convolutional blocks, i. e., TCN
blocks, as shown in Fig. 2. We first normalize speech features
and transform their dimensions. After it, there are several layers
of TCN block. We multiply voiceprint and speech features for
input into each TCN block. The output of each TCN block is
then summarized and multiplied by voiceprint and processed by
the parametric rectified linear unit (PReLU), pointwise convolu-
tion (1× 1 Conv), and sigmoid activation function to obtain the
target speaker’s mask masktarget. The mask multiplies mixed
speech features to obtain features of the target speaker. Finally,
the speech decoder decodes clean target speech. The comple-
ment of masktarget is then used as the interfering speaker’s
mask only during the training phase to improve performance.
The interfering speaker’s mask can be defined as:

maskinterfering =M −masktarget, (1)

where M is a matrix with the same shape as masktarget and
all elements are 1.

Specifically, the TCN block consists of several components
connected in a series, i. e., 1 × 1 Conv, PReLU, normalization,
depthwise convolution (D-Conv), PReLU, normalization, and
1 × 1 Conv, as shown in Fig. 4(A). The TCN block has two
output paths. One is used as the input of the next TCN block,
and the other is summarized with the other TCN block outputs
as the mask. There are residual connections within the TCN
block. The two 1 × 1 Conv components integrate information
at the channel dimension. The D-Conv performs convolution on
the time dimension of each channel. There are three TCN block
groups in this module and eight TCN blocks in each group. The
dilation factor of each group gradually increases with an expo-
nent of 2 as the network deepens, i. e., 1, 2, 4, ..., 128, allowing
the convolution receptive field to expand gradually for more in-
formation. At the beginning of each group, we reset the dilation
factors to 1. The speaker extraction module forms a fine-rough-
fine-rough style.

Inspired by [22], we utilized DPRNN as the speaker ex-
traction module, as seen in Fig. 3. After normalization and
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Figure 2: Speaker extraction model based on TCN blocks. Dif-
ferent colors in TCN blocks denote different dilation factors.

1 × 1 Conv, the speech features are split into fixed length
chunks. The obtained chunks are spliced in parallel to form a
two-dimensional (2-D) structure. Similar to TCN, our DPRNN
separation module is composed of stacked DPRNN blocks. The
voiceprint and speech features are multiplied as inputs into the
DPRNN blocks at intervals of 1. Each DPRNN block consists
of several components connected in a series, i. e., intra-chunk
LSTM, linear, normalization, inter-chunk LSTM, linear and
normalization, as displayed in Fig. 4(B). There are also residual
connections in the DPRNN block. Specifically, the intra-chunk
LSTM extracts features within chunks on a short time scale,
and inter-chunk LSTM extracts features between chunks on a
long time scale. Reasonable setting of chunk length and speech
length can ensure that each LSTM processes a sequence that is
not too long, which enhances the model’s ability to process long
sequences and increases the upper limit of modeling precision.
We used nine DPRNN block groups, with each group consist-
ing of one intra-chunk LSTM and inter-chunk LSTM to form a
fine-rough-fine-rough style.

2.4. Loss function

The traditional speech separation models usually use the mean
square error (MSE) between the predicted time-frequency mask
and actual mask as a training goal. Recently, Luo et al. [10,
22] utilized the scale-invariant source-to-noise ratio (SI-SNR)
between predicted waveforms and the target to optimize the SI-
SNR value. Here, we used SI-SNR loss for training. We also
reconstructed the interfering speech to improve performance.
The SI-SNR can be defined as:


starget =

〈ŝ,s〉s
‖s‖2 ;

enoise = ŝ− starget;

SI − SNR = 10 log10
‖starget‖2
‖enoise‖2

,

(2)

where ŝ and s are the predicted speech and target speech, re-
spectively, and 〈s, s〉 and ‖s‖2 are the signal power.

2.5. Low-latency capability

Our framework can meet real-time requirements by following
simple modifications. Certain occasions are easy to register and
restore voiceprints, such as in a car, at home, or in a meeting
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Figure 3: Speaker extraction model based on DPRNN block.

room. We can directly use the retained voiceprints for registered
speakers and skip the voiceprint encoder. The speech encoder
and decoder generally adopt a window length of 2 ms or even
less, which is significantly shorter than the time-frequency do-
main model, 32 ms in general. Therefore, our low latency upper
limit is much shorter than the time-frequency domain model.
The real-time capability of the speaker extraction module is crit-
ical. We adopt causal D-Conv in each TCN block, whose con-
volution receptive field only covers historical information, and
replace all global normalization functions with a causal normal-
ization function, i. e., cumulative layer normalization (cLN):

cLN(fk) =
fk−E[ft≤k]√
V ar[ft≤k]+ε

� γ + β;

E [ft≤k] =
1
Nk

∑
Nk ft≤k;

V ar [ft≤k] =
1
Nk

∑
Nk(ft≤k − E [ft≤k])

2,

(3)

where fk is the k-th frame of the entire feature F , ft≤k cor-
responds to the feature of k frames [f1, . . . , fk], and γ,
β are trainable parameters applied to all frames. Based on the
above modifications, our model is entirely causal. The theoret-
ical delay only depends on the delay of the speech encoder and
decoder module. If we reserve non-causal D-Conv in the un-
derlying TCN blocks and use causal D-Conv in the upper TCN
blocks, our model can utilize certain future information, result-
ing in a slight increase in model performance. As a cost, the
theoretical delay will increase. Furthermore, by setting inter-
chunk LSTM as unidirectional, using causal normalization, we
can also achieve a low-latency model based on DPRNN. We
can modify the size of the chunk to adjust the length of the de-
lay. We can achieve different low-latency models to balance the
trade-off between performance and real-time according to the
real-time requirements of specific application scenarios.

3. Experiments and results
3.1. Dataset and experiment settings

We evaluated model performance on the speech separation
benchmark dataset WSJ0-2mix [6]. Our training data prepa-
ration method was similar to that of VoiceFilter [12]. We
randomly selected two speakers and set the first as the target
speaker and the other as the interfering speaker by default. We
then randomly selected two speeches from the target speaker
and one speech from the interfering speaker, and prepared them
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as training triples, namely target speech, reference speech, and
interfering speech. Speeches were cuted at random location and
divided into two segments, which were then reversed back and
forth and combined again to augment training data. The length
of target and interfering speech was limited to 6 seconds. If
it exceeds 6 seconds, we used the first 6 seconds; if this was
not enough, we extended it with zeros. The speech mixtures
were generated by mixing them at random signal-to-noise ra-
tios (SNR) between -2.5 dB and 2.5 dB. We performed STFT
on the reference speech, with a hanning window length of 32
ms and frameshift of 8 ms. In the test phase, we made cor-
responding modifications to the WSJ0-2mix test set for speaker
extraction task. Specifically, we set one speaker as the target the
other as the interfer. We then mixed the target speech and in-
terfering speech according to the given SNR without additional
processing. We used another speech of the target speaker in test
set as a reference speech. In this way, one original test speech
will generate two test speeches with different target speakers.
We downsampled all speeches to 8 kHz.

We trained the networks until the performance of the evalu-
ation set did not improved in 5 consecutive epochs. Adam [26]
was used as the optimizer. Gradient clipping with a maximum
L2-norm of 5 is applied during training. The learning rate was
set to 1e−3. We built our model in Pytorch.

3.2. Global model performance

Our global model performed significantly better than other
models in the speaker extraction task on the WSJ0-2mix dataset,
as seen in Tab. 1. It should be noted that although the best
signal-to-distortion ratio (SDR) reported by SpEx is 15.9 dB,
this is the result of a 60 seconds reference speech spliced using
multiple reference speeches. When using only one reference
speech, like ours, its performance is 15.1 dB. Besides, SpEx
uses a multi-scale encoding method with a maximum window
length of 20 ms, which severely reduces the low latency poten-
tial of the model. Although VoiceFilter reported a very compet-
itive performance, i. e., 17.9 dB SDR in their test set (i. e., Lib-
riSpeech) [12], its SDR improvement (SDRi) is 7.8 dB, which
is caused by clean signals mixed with silent parts of interference

Table 1: SDR with different speaker extraction methods based
on the WSJ0-2mix dataset. ‘*’ indicates that a 60 seconds ref-
erence speech was used.

Methods #Params SDR(dB)

SBF [27] 19.3M 6.48
SBF-MTSAL [18] 19.3M 10.36
SBF-MTSAL-Concat [18] 8.9M 11.39
SpEx [23] 10.8M 15.1
SpEx* [23] 10.8M 15.6
ours using TCN 7.4M 16.19
ours using DPRNN 6.3M 17.44

signals.

3.3. Low-latency model performance

Our low-latency models showed good performance, as shown in
Tab. 2. We compared the performance of TCN under different
latencies. Unsurprisingly, the performance of the model grad-
ually decreased with decreasing latency. Lower latency means
less future information is used. We also compared the perfor-
mance of DPRNN with 100 ms latency and found that the per-
formance degradation was not severe. In application scenarios
with different latency requirements, our framework could easily
balance latency and performance.

Table 2: SDR improvements (dB) with different low latencies on
the WSJ0-2mix dataset. Frame length of following models is 2
ms.

Block used Low-latency SDR(dB) SDRi(dB)

TCN global 16.19 16.06
TCN 0 ms 12.19 12.07
TCN 1 ms 12.21 12.08
TCN 7 ms 12.35 12.19
TCN 15 ms 12.51 12.40

DPRNN global 17.44 17.30
DPRNN 100 ms 16.77 16.62

4. Conclusions
We proposed a unified time-domain speaker extraction frame-
work and built a variety of time-domain models under this
framework. The global models based on TCN and DPRNN
blocks all surpassed current state-of-the-art results in the
speaker extraction tasks using WSJ0-2mix dataset. We then
built and evaluate corresponding low-latency models. Results
showed comparable performance with much shorter upper limit
latency than the time-frequency domain models. We also found
that low-latency model’s performance gradually decreases as la-
tency decreases, which is important for deploying models in ac-
tual application scenarios.
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