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Abstract
A new model for vocal folds with a polyp is proposed, based
on a mass-spring-damper system and body-cover structure. The
model was used to synthesize a wide variety of sustained vowels
samples, with and without vocal polyps. Analytical conjectures
regarding the effect of a polyp on synthesized voice signals cor-
responding to sustained vowels were performed. These conjec-
tures are then used to estimate intrinsic dimension and differen-
tial entropy. These parameters were used to implement a naive
classifier with the samples of the public Saarbruecken Voice
Database, as a proof of concept. The results obtained suggests
that the model presented in this paper might be a useful tool for
tuning actual polyp detectors.
Index Terms: models of speech production, vocal fold polyp,
intrinsic dimensional analysis

1. Introduction
Polyps are one of the most common lesions on vocal folds, be-
ing unilateral in most cases [1]. Its origin is related to trauma,
caused by high mechanical stress related to abuse, misuse, and
overuse of voice [2] or by voice-unrelated violent physical ac-
tivities with intense respiratory behavior [3]. The presence of
a polyp affects folds vibration, potentially causing incomplete
closure during phonation and leading to irregular oscillation
patterns on both affected and unaffected folds [4]. The vocal
polyp voice might be perceived as rough and, in some cases,
breathy [3], due to motion aperiodicity on the glottis and occa-
sional air leakage, respectively [1].

Mathematical models for the vocal folds vibration, usu-
ally based on mass-spring-damper systems and fluid mechanics,
are powerful tools to analyze specific behaviors of vocal folds
vibration in different conditions. Relying on the myoelastic-
aerodynamic theory of phonation [5], several mathematical
models were proposed to represent glottal vibration, applied to
normal and pathological phonation [6]. Since the diagnosis of
vocal polyps requires auditory experience and invasive proce-
dures to the patient [2], the application of mathematical models
might yield useful complementary tools for a specialist to ana-
lyze and identify characteristics of vocal polyp on voice [7, 8].
A low-dimensional non-linear model of vocal folds with a uni-
lateral polyp was proposed in [9], adding an extra mass to a
previous simplified two-mass model [10]. It is noteworthy that
more refined finite element models were proposed in [11] and
[12], and that previous modal analysis in a finite element model
suggests that low-dimensional models may represent satisfacto-
rily the oscillation patterns of vocal folds [13].

The intrinsic dimension (ID) analysis of data is a growing
field in pattern recognition and has become increasingly useful
due to the dimensionality reduction of raw and processed data.
For instance, the ID is related to the minimum number of latent
variables (free parameters). For instance, the method presented
in this work uses the broadest definition that the ID in question

exists only locally, and, in our analysis [14], the intrinsic dimen-
sion and differential entropy are jointly estimated, under the as-
sumption that, projecting signals in low-dimensional and high
entropy spaces, tasks like classification, regression, clustering,
and data visualization are better performed [15, 16, 17, 18, 19].
This paper presents a modification in a model of vocal folds
with a polyp, based on the body-cover structure [20], and makes
use of intrinsic dimension and entropy analysis to exemplify
some alternatives in automatic detection of vocal polyp.

2. Mathematical body-cover model of vocal
folds with a polyp

The proposed model adapts the structure presented in [9] into
the three-mass body-cover model of vocal folds described in
[21]. For each vocal fold, the model uses one mass for the body,
two mass for the cover, coupled by a linear spring, and, on the
fold affected by the lesion (the right fold was arbitrarily chosen),
one mass for the polyp, as presented in Figure 1.
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Figure 1: Body-Cover Model of Vocal Folds with a Polyp.

2.1. Motion equations

The equations of motion for the three-masses of each vocal fold
α (α = r, l) and the polyp mass are written as:

m2αẍ2α =Fk2α + Fb2α − Fkcα + F2 + FCol2α (1)

m1rẍ1r =Fk1r + Fb1r + Fkcr + F1 + FCol1r
−Fkp − Fbp

(2)

m1lẍ1l =Fk1l + Fb1l + Fkcl + F1 + FCol1l (3)
mpẍp =Fkp + Fbp + FColp (4)

MαẌα =FKα + FBα − Fk1α + Fd1α + Fk2α + Fd2α (5)

where:
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• xiα (i = 1, 2) are the displacements of the cover masses,
Xα is the displacement of each body mass and xp is the
displacement of the polyp mass;

• Fkiα , Fkp and FKα are the spring forces acting on the
masses and Fkcα is the coupling force between cover
masses, given by:

Fkiα = −kiα
(

((xiα − xiα0)− (Xα −Xα0))

+ ηiα ((xiα − xiα0)− (Xα −Xα0))3
) (6)

Fkp = −kp
(

((xp − xp0)− (x1r − x1r0))

+ ηp ((xp − xp0)− (x1r − x1r0))3
) (7)

FKα = −Kα

(
(Xα −Xα0) +H (Xα −Xα0)3

)
(8)

Fkcα = −kp ((x1α − x1α0)− (x2α − x2α0)) (9)

where xiα0 , xp0 e Xα0 are the initial position of the
masses, kiα, kp, Kα and kcα are the spring constants
and ηiα, ηp and H are the nonlinear coefficients of the
springs;

• Fbiα , Fbp e FBα are the damping forces acting on each
mass, given by:

Fbiα = −biα
(
ẋiα − Ẋα

)
(10)

Fbp = −bp (ẋp − ẋ1) (11)

FBα = −BαẊα (12)

• FColiα and FColp are the forces on the masses due to
collision with other masses, given by:

FColiα = −Θ (−ai) kColiα
(
xiα + ηColiαx

3
iα

)
(13)

FColp = −Θ (−ap) kColp
(
xp + ηColpx

3
p

)
(14)

where Θ is the collision function, proposed in [10], ai
and ap are the areas between masses of each fold and
between the polyp and the lower mass of left fold, re-
spectively, ai0 and ap0 are the initial areas, kColiα and
kColp are the collision stiffness constants and ηColiα and
ηColp are collision nonlinear coefficients;

• Fi are the aerodynamic forces acting on cover masses,
due to air pressure at the glottis.

The areas between masses of both sides of vocal folds are
defined as follows:

ai = l (xir + xil) (15)

ap = lp (xp + x1l) (16)
where l is the length of the glottis and lp is the length of the
polyp.

2.2. Glottal aerodynamics

The external forces acting on vocal fold, due to air pressure,
are obtained by adapting the equations presented in [22] for the
three-masses model. For an open glottis condition, i.e., a1 > 0
and a2 > 0, the pressures within the glottis are computed as
follows:

P1 =

Ps −
ad
a1
Pkd, a2 > a1

Ps −
(
a2
a1

)2
Pkd, a2 ≤ a1

(17)

P2 =

{
Ps − Pkd, a2 > a1

Ps − a2
a1
Pkd, a2 ≤ a1

(18)

where Ps is the subglottal pressure, ad and Pkd are, respec-
tively, the area and the kinetic pressure at flow detachment
point, both defined as proposed in [22].

For the glottal closure, pressures acting on the vocal folds
are obtained as follows:

P1 =

{
Ps, a2 ≤ 0 and a1 > 0

Ph, a1 ≤ 0
(19)

P2 =

{
Pe, a1 ≤ 0 and a2 > 0

Ph, a2 ≤ 0
(20)

where Ph is the hydrostatic pressure, defined as the mean be-
tween Ps and Pe, the pressure at epilarynx tube, immediately
above the glottis, dependent of vocal tract coupling.

The aerodynamic forces that act on the folds are given by:

Fi = lTiPi (21)

where Ti are the thickness of each cover mass.

2.3. Glottal flow and vocal tract coupling

The glottal flow is computed according to the Titze’s equa-
tion [23]. Turbulent flow on the glottis are modelled using the
Reynolds number as proposed in [24].

The vocal tract and trachea are coupled to the vocal folds
using a wave-reflection analog model for the acoustics [25].
The model is implemented as proposed in [26], using the for-
mulation for a lossless tube and applying an attenuation factor
to represent losses. The areas of trachea and vocal tract were
obtained and discretized as in [27] and are available with the
open source software LeTalker 1.22 [28]. For this study, only
vocal tract shapes for vowels /a/, /i/ and /u/ were used.

2.4. Muscular rules to set model parameters

The rules proposed in [29] to relate muscular activities and
model parameters were used. Stiffness, mass, damping, thick-
ness and adduction (xiα0 ) of each mass and the length of the
folds were defined by normalized activation levels (ranging
from 0.0 to 1.0) of cricothyroid (act), thyroarytenoid (ata) and
lateral cricoarytenoid (alc) muscles.

For this study, samples were generated using act and ata
varying from 0.05 to 0.85 with steps of 0.1 and alc varying
from 0.425 to 0.575 with steps of 0.25. The nonlinear coef-
ficients assume the values proposed in [21, 30], kp is fixed at
140 kg/s2 and other polyp parameters were defined as pro-
posed in [9]. The resulting model was used to generate nor-
mal (removing the polyp mass) and pathological samples. The
samples from simulations with parameters that didn’t produced
sustained oscillation were discarded.

3. Vocal polyp detection from local intrinsic
dimension and differential entropy

As an illustration of a practical utility of the model developed in
Section 2, we implemented the model in a computer program,
and we simulated more than 800 male and female speech sig-
nals1, with and without polyp, in a wide range of fundamental
frequency, according to the muscular rules [29].

Then we proceeded a careful study of these synthetic sig-
nals, from many different temporal and spectral points of view.

1These samples are available at biochaves.com/en/polyp-samples
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Eventually, we noticed that a polyp induces irregular (random)
amplitude fluctuations through time, as illustrated in Fig. 2,
which prompted us to work out a polyp detection approach
based on signal entropy and local intrinsic dimension, as ex-
plained in this Section.

Let s(n), n = 0, 1, 2, . . . , N , with s ∈ R, N ∈ N repre-
sentN sound signal samples acquired at a constant fs sampling
rate of samples per second. For a proper approach of speech
signal modelling, we assume that {s(0), s(1), . . . , s(N)} is an
instance of a stochastic process, where the presence of a polyp is
expected to disturb the stochastic model. Indeed, as illustrated
in Fig. 2, it is clear that after the speech onset, a random am-
plitude fluctuation is caused by a simulated polyp in the vocal
fold.

Figure 2: Signals representing instances of s(n) from synthetic
vowels without (up) and with (bottom) polyp. Speech onset in-
terval are indicated, as well as the random amplitude fluctua-
tion caused by a simulated polyp in the vocal fold.

For the purpose of this work, we assume that the model per-
turbation imposed by a polyp is enough to impress a detectable
change in the produced speech, even when the polyp is just a
tiny perturbation in the vocal fold structure. This assumption is
inspired by the skill of some trained speech therapists that are
able to detect abnormalities, as the ones induced by polyps, in
patients through the listening of their voices.

Using the simulator described in Section 2, through exper-
iments with signals such as those shown in Fig. 2, we were
able to pinpoint a statistical difference in synthetic voices with
and without polyps, which is a consequence of the random am-
plitude fluctuation shown in that figure. More specifically, it is
known that a perfectly periodic signal produces a phase-space
trajectory corresponding one-dimensional closed loop, whereas
random noises of fluctuations are expected to deform this trajec-
tory. Figure 3 illustrates two 2D projections of such trajectories
for two synthetic sustained vowels. For a proper illustration,
we set a time lag of τ = 0.001 s for both signals, therefore
points correspond to coordinate pairs (s(n), s(n + τfs)), in a

signal segment of 60 ms (i.e. a signal chunk of 3000 samples,
at fs = 44.1KHz).

Figure 3: Dots represent coordinate pairs (s(n), s(n + τfs))
from synthetic vowels without (left) and with (right) polyp.

For a better comparison, both sets of points were enclosed in
a square of unit edge. It is noteworthy that it corresponds to
a signal normalization where all sample values fall inside the
interval [-0.5, 0.5]. This normalization is also applied to all
signals considered in this work.

Even from the restrained perspective of those 2D projec-
tions, as in Figure 3, where signal trajectories are too convoluted
to a proper planar visualization, it is clear that trajectories as-
sociated to vocal folds with polyps are less detached from each
other (subfigure on the right) than trajectories from speech with-
out polyps (subfigure on the left). Therefore, two assumptions
form the basis of the method proposed in this work to polyp
detection from speech signals, namely:

(a) After onset, sustained clean vowels are almost periodic,
therefore they form trajectories in the phase space that
are locally 1D, in other words, they produce (convoluted)
funicular loops.

(b) By contrast, sustained vowels where vocal fold dynamic
is disturbed by the presence of a polyp produce trajec-
tories less well defined in the phase space, possibly col-
lapsing on each other.

A relevant consequence of (b) is that one should no longer
expect locally 1D trajectories, for collapsing trajectories are
likely to locally occupy more than a single dimension of the
space. To take advantage of it, we adapted the method proposed
in [14], which is able to jointly estimate the local dimension and
effective volume (through the differential entropy) of a given in-
stance of a stochastic signal, such as a speech segment. In this
adaptation, 6D patterns (vectors) are obtained from consecutive
signal samples as:

p(n) = [s(n), s(n+1), . . . , s(n+5)], n = 0, 1, 2, . . . , N−5,

but only patterns with signal samples after onset are retained for
further analyses.

For a set of P patterns, where P corresponds to about 50 ms
of signal (e.g. P = 2500 patterns for fs = 44100 samples per
second), from a given speech sample, we proceed the joint ana-
lysis as explained in [14], where two statistical measurements
in logarithmic scale are obtained through straightforward coin-
cidence counting. The two measurements in logarithmic scale
are log2(r) and log2(C(r)), where r corresponds to the edge
length of a cube (or a hypercube) inside which two patterns are
said coincident, and C(r) stands for the coincidence rate for
this definition of coincidence.
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For the purpose of this manuscript, let u(r) = log2(r)
and v(r) = log2(C(r)) be just two functions of the edge
length r, therefore local intrinsic dimension can be estimated
as d̂(r) = dv(r)

du(r)
. Consequently, the differential entropy, for a

given analysis scale r, can be estimated as ĥ(r) = d̂(r)− v(r).
In Figure 4, both estimates are illustrated for two synthetic sig-
nals.

Figure 4: Two curves from which joint estimates of intrinsic
dimensions (curves slopes) and differential entropies (distances
from corresponding constant slope lines) can be obtained for
a range of scale analyses. For instance, at a scale analysis of
2−3, intrinsic dimensions and differential entropies for signals
without and with vocal fold polyp are estimated as tangents of
angles α0 and α1, and distances h0 and h1, respectively.

Thanks to a laborious study of curves similar to those pre-
sented in Figure 4, for all synthetic sustained vowel, we ob-
served that at a scale corresponding to log2(r) ≈ −3, therefore
for r ≈ 2−3, a difference in terms of intrinsic dimension and
differential entropy consistently appears between signals from
vocal folds with and without polyps. As explained before, this
difference was analytically expected, and we conjecture that it
can be attributed to the random amplitude fluctuation, which in-
duces an increase of local intrinsic dimension (at small scale
of analysis r), and forces a decrease of differential entropy (ef-
fective volume, as explained in [14]) for that higher dimension.
Both effects are illustrated in Figure 4.

To briefly test this new approach (although it plays more the
role of a concept proof, in this work), we used the Saarbruecken
Voice Database [31]. Accordingly, in Fig. 5 points correspond
to real speech samples from vocal folds with (dots) and without
(crosses) polyp. Each point coordinate is given by the estimated
differential entropy and intrinsic dimension for an analysis scale
of r = 2−3. Only sustained vowel /a/ in neutral tone were used
in this experiment. Moreover, only samples from s(3000) on
were analysed, in agreement with the observation (with syn-
thetic signal) that signal segments just after transitory emission
interval are carriers of more discriminative features.

Finally, a very simple classifier was implemented according
to the following rules:

• If the differential entropy of a given signal is greater than
Th and its intrinsic dimension is lower than Td, then the
speech segment is classified as normal;

Figure 5: Illustration of points corresponding to real speech
samples from vocal folds with (dots) and without (crosses)
polyp. Each point coordinate is given by the estimated dif-
ferential entropy and intrinsic dimension for an analysis scale
of 2−3. Two thresholds for entropy and dimension, Th = 1
and Td = 1.75, respectively are indicated, yielding a simple
anomaly (polyp) classification rule.

• otherwise, it is classified as anomalous (with polyp, in
this case).

For illustration purposes, as shown in Figure 5, for Th = 1
and Td = 1.75 about 22 % of speech with polyps were missed
(classified as normal), whereas about 23 % of normal signals
were wrongly classified as anomalous.

4. Discussion and Conclusions
In this paper a mathematical body-cover model of vocal folds
with a polyp was developed, and a computational implementa-
tion of this model was obtained.

To illustrate the potential usefulness of such model, more
than 800 sustained vowels from females and males, with and
without polyps were simulated, and these samples were studied
to produce a preliminary draft of a polyp detector from speech
signal only (whose practical interest would be to avoid some
invasive clinical exams [2]). In this brief illustration, a classi-
fier was adjusted from synthetic data, yielding a classification
result which is far from chance. Nevertheless, this classifier is
presented here just as a proof of concept, and further develop-
ment is necessary for it to be taken as a properly validated polyp
detector.

On the other hand, this illustration suggests that the model
presented in this paper can be used for, for instance, data aug-
mentation for the purpose of fine tuning of actual polyp detec-
tors from speech in future works. It is particularly useful if one
considers that real databases, such as the one used in this work,
are relatively rare, and typically hard to obtain (which possibly
justifies why they are relatively small too).

5. Acknowledgements
This work has been supported by Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES)
to J.S, with a graduate scholarship, and by The Conselho Na-
cional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) to
J.M., grant 308319/2018-4.

1389



6. References
[1] D. de Vasconcelos, A. d. O. C. Gomes, and C. M. T. de Araújo,
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