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Abstract
Speech production involves the movement of various articula-
tors, including tongue, jaw, and lips. Estimating the movement
of the articulators from the acoustics of speech is known as
acoustic-to-articulatory inversion (AAI). Recently, it has been
shown that instead of training AAI in a speaker specific manner,
pooling the acoustic-articulatory data from multiple speakers is
beneficial. Further, additional conditioning with speaker spe-
cific information by one-hot encoding at the input of AAI along
with acoustic features benefits the AAI performance in a closed-
set speaker train and test condition. In this work, we carry out
an experimental study on the benefit of using x-vectors for pro-
viding speaker specific information to condition AAI. Experi-
ments with 30 speakers have shown that the AAI performance
benefits from the use of x-vectors in a closed set seen speaker
condition. Further, x-vectors also generalizes well for unseen
speaker evaluation.
Index Terms: acoustic-to-articulatory inversion, BLSTM, x-
vectors

1. Introduction
Speech acoustics is a result of movements of the articulators
namely tongue, lips, jaw, velum which form constriction in the
vocal tract [1]. Along with the speech acoustics, having the
knowledge of articulatory position has been shown to bene-
fit many speech applications including, multimedia [2, 3, 4],
speaker verification [5, 6], automatic speech recognition [7, 8]
and speech synthesis [9, 10]. One of the state-of-the-art de-
vices to acquire the synchronous acoustic-articulatory data is
electromagnetic articulograph (EMA). In case where direct ar-
ticulatory measurement is not feasible, to estimate articula-
tory movements, an acoustic-articulatory mapping is typically
learned with the available acoustic-articulatory data. The es-
timation of the articulatory movement from the speech acous-
tics is known as acoustic-to-articulatory inversion (AAI). In the
literature various models were proposed for AAI, e.g., code-
book based [11], Gaussian Mixture Model (GMM) [12], Hid-
den Markov Model (HMM) [13] and neural network based ap-
proaches [14, 15, 16]. The state-of-art performance is achieved
by long short term memory (LSTM) networks, which is a recur-
rent neural network (RNN) [15, 16].

In order to learn the weights of an LSTM, one needs a sig-
nificant amount of acoustic-articulatory data. However, collect-
ing large amount of data using EMA from a speaker is impracti-
cal and cumbersome as sensors fall off in a long recording, and
re-attaching them becomes a challenge causing discomfort to
the subject. To reduce the demand on the amount of acoustic-
articulatory data from a speaker, a low resource AAI model has
been proposed using generic model AAI (GM AAI) model [16]
which is trained by pooling the data from all speakers using bi-
directional long short term memory networks (BLSTM). The
performance of the GM AAI is shown to be better than that

of separate speaker dependent AAI (SD AAI) model, where
training is performed using acoustic-articulatory data from each
speaker separately. This indicates that BLSTM networks are
able to capture multiple speakers’ acoustic-to-articulatory map-
pings without drop in performance compared to the speaker de-
pendent AAI models. The GM AAI model can be fine-tuned
with speaker specific acoustic-articulatory data, which results
in further improvements in the performance of AAI [16] com-
pared to GM AAI. In summary, this approach involves two-step
training procedure, first to build GM AAI with multiple speak-
ers’ acoustic-articulatory data, and then fine-tuning GM AAI to
speaker specific data. This results in separate AAI models for
each speaker after speaker specific fine-tuning, which, although
improve AAI performance, increases the number of models and,
hence, the number of parameters, which, in turn, increases the
storage requirement unlike the GM AAI model.

To overcome this limitation, an alternative approach to fine-
tuning GM AAI is proposed, in [17], by conditioning BLSTM
with auxiliary features which carry speaker specific informa-
tion, along with the acoustic features for learning rich acoustic-
to-articulatory mappings of multiple speakers within a single
model. This is performed by representing speaker specific in-
formation as one-hot encoding to condition GM AAI, known as
speaker conditioned AAI (SC AAI) [17]. It has been shown that
SC AAI is efficient and provides a more compact way of learn-
ing multiple AAI mappings compared to fine-tuning GM AAI
for every speaker. But representing speaker specific information
as one-hot encoding limits the SC AAI model to the closed-set
speaker condition (train and test sets comprising the same set of
speakers).

In this work, instead of representing speaker specific infor-
mation with one-hot encoding, we utilize x-vectors which are
known to encode the speaker specific information [18]. We hy-
pothesize that x-vector based SC AAI model (xSC AAI) would
have following benefits: i) it can achieve performance on par
with the SC AAI in closed-set condition and can capture multi-
ple speakers’ AAI mapping within a single model, ii) unlike SC
AAI, x-vectors can able to generalize in unseen speaker evalu-
ation, where train and test speakers are different. In this work,
we perform an experimental study to compare the performance
of the proposed xSC AAI model with different baseline AAI
methods in both seen and unseen speaker evaluation conditions.
Experiments are performed with acoustic-articulatory data of 30
speakers each speaking 460 English sentences, where 20 speak-
ers are used for seen speaker AAI model evaluations and 10
speakers for unseen speaker evaluations. Experimental results
revealed that the xSC AAI model performs on par with one-hot
representation based SC AAI in seen case evaluation, and out-
performs the baseline methods in unseen speaker evaluation.

2. Dataset
For experiments, 460 English sentences from MOCHA TIMIT
[19] were chosen as a speech stimuli. Acoustic-articulatory data
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was collected from 30 speakers, comprising 15 male (M1–M15)
and 15 female (F1–F15) speakers. All the speakers were pro-
ficient in English and reported to have no speech disorders in
the past. Acoustic-articulatory data was collected using AG501
electro-magnetic articulograph (EMA) [20].

Using the t.bone EM9600 shotgun microphone [21] placed
in front of the speaker, acoustic data was recorded at a sampling
rate of 48kHz. Along with the acoustics, synchronous articula-
tory movement data was collected at 250Hz, by gluing (using
“Epiglu” [22]) sensors of AG501 on six articulators namely up-
per lip (UL), lower lip (LL), jaw (Jaw) tongue tip (TT), tongue
body (TB) and tongue dorsum (TD), following recommenda-
tions reported in [23]. For head movement correction, two ad-
ditional sensors were glued on the mastoids. Fig. 1 shows a
midsagittal view of the vocal tract illustrating the placement of
sensors, which capture the movements in horizontal and ver-
tical directions indicated by X and Y. The sensors capture the
articulatory movements in horizontal and vertical directions in-
dicated by X and Y respectively in the midsagittal plane [16].
This results in a 12-dim articulatory feature vector which are
indicated by ULx, ULy , LLx, LLy , Jawx, Jawy , TTx, TTy ,
TBx, TBy , TDx, TDy . During recording, each sentence was
projected on a computer screen placed in front of the speaker,
and a slide changer was provided to the speaker to navigate
through all the sentences. We recorded simultaneous acoustic-
articulatory data for each sentence. For each speaker, all 460
sentences were recorded in a single session. To remove the start
and end silence segments in each sentence, we performed man-
ual annotations to the recorded acoustic-articulatory data. This
resulted in a total of 11.19 hours of acoustic-articulatory data
with an average duration of 22.38 (± 2.48) minutes per speaker.

Upper Lip: UL
Lower Lip: LL
Jaw: Jaw
Tongue TIP:TT
Tongue Body: TB
Tongue Dorsum: TDJaw

LL

UL
TBTD

TT

Y
X

Figure 1: Schematic diagram indicating the placement of EMA
sensors [16]

3. Proposed approach
The mapping function from acoustic features to articulatory
movements is known to be non-unique and nonlinear in nature
[24]. Further, the relation between acoustic features and artic-
ulatory movements is not instantaneous due to co-articulation.
Rather, the articulatory position at a time depends on the acous-
tics before and after that time instant. Also, it is known that the
articulatory movement trajectories are smoothly varying in na-
ture [24]. In order to learn this non-linear and complex function,
neural networks have been shown to perform well in model-
ing the AAI. Recently, bi-directional long short term memory
(BLSTM) networks are shown to achieve the state-of-the-art
performance for AAI task. BLSTM networks have also been
shown to preserve the smoothness characteristics in the esti-
mated articulatory trajectories [15, 16] implicitly and do not
need any further post-processing steps for smoothing, unlike
DNN and GMM. Recently using BLSTM, in [17], it has been
shown that by conditioning BLSTM networks using speaker in-
formation (as one-hot encoded representation) would benefit the
performance of AAI in a closed-set speaker training and eval-
uation condition. To generalize the SC AAI to an unknown
speaker, instead of conditioning the SC AAI model with the

one-hot representation of speaker specific information, we, in
this work, perform experiments with x-vectors as a representa-
tion to encode speaker information.

x-vectors are neural network embeddings, which are re-
cently shown to be successful in extracting speaker represen-
tations and widely used in speaker verification, language iden-
tification, and speaker diarization applications [25]. From the
variable-length acoustic segments, the x-vector model computes
speaker embedding using Time-Delay Deep Neural Network
(TDNN) architecture [18]. The first few layers in TDNN com-
prises time-delay network which are equivalent to dilated con-
volutions. The sequence of time-delay layers are used to extract
information from the input frame-level features by aggregating
context from previous and future frames. The time-delay lay-
ers are followed by a pooling layer which computes the mean
and standard deviation from the TDNN output over time which
are used as a speaker embedding computed based on an input
utterance from a speaker, which is known as x-vector.

Articulatory
trajectories

Pooled Speakers

Acoustic
features

Dense
layer

BLSTM
layers

Regression
layer

Concatenate

X-vector
Dense
layer

Figure 2: Block diagram of the proposed SC AAI model using
x-vector approach (xSC AAI).

The proposed approach for SC AAI using x-vector, in-
dicated as xSC AAI is illustrated in Fig. 2. From a given
speech utterance, we compute an acoustic feature vector at ev-
ery speech frame (frame rate of acoustics features and the sam-
pling rate of articulatory features are matched to obtain one to
one correspondence between the two). Further, from the vari-
able length utterance, a fixed dimensional (512) x-vector is ex-
tracted using TDNN, and we replicate the x-vector for every
frame in the utterance to match the number of acoustic feature
vectors. The acoustic features and x-vectors are fed to sepa-
rate dense layers as shown in Fig. 2. The outputs of dense
layers are concatenated and fed to the BLSTM layers. The
output of BLSTM layers is fed to a time-distributed linear re-
gression layer using linear activation. The mean squared error
between the original and predicted articulatory features is used
as a loss function to learn the neural network weights. Train-
ing of the xSC AAI model is performed with multiple speak-
ers’ acoustic-articulatory data. In seen case evaluation, test sen-
tences (non-overlapping with training sentences) are from the
training speaker set. In this work, we choose 20 speakers for
the seen case experimental set-up. While in unseen evaluation,
neither acoustic features nor x-vectors from test speakers are
utilized during the training of the SC AAI model. In this work,
we have chosen 10 unseen speakers.

4. Experimental setup
Data post-processing and feature computation: We per-
form post-processing operations on the recorded acoustic-
articulatory data, before computing acoustic and articulatory
features. The articulatory data is first low-pass filtered with a
cutoff of 25Hz, to avoid high-frequency noise. This is done
also because it is known that the articulatory trajectories are
slowly varying in nature and most of the energy lies below 25Hz
[24, 26]. Also, the articulatory data obtained at 250Hz is down-
sampled to 100Hz make it synchronous with acoustic features.
As acoustic features, we compute 13-dim Mel-frequency cep-
stral coefficients (MFCCs) [27] from the recorded speech sig-
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nal using a window size of 20ms with 10ms frameshift. In the
literature, MFCCs have been shown to be optimal for the AAI
task using maximal mutual information criterion [24] as well as
using representations learned from the raw waveform [28]. At
an utterance level, we perform mean and variance normaliza-
tion of both the acoustic and articulatory features. From the 30
speakers, as described above, we choose 20 speakers (10 male:
M1– M10 and 10 female: F1– F10) for the train and test sets
under seen speaker condition and 10 speakers (5 male: M11
– M15 and 5 female: F11 – F15) for unseen speaker evalua-
tion. For all the experiments, from each speaker (both seen and
unseen) the recorded acoustic-articulatory data using 460 sen-
tences were divided into a training set 80% (364), validation set
10% (46) and testing set 10% (46).

AAI schemes and evaluation metrics: In order to compare
the performance of the xSC AAI, we consider baselines with
different AAI models. In seen speaker evaluation, we con-
sider different training schemes resulting in the following AAI
models: a) speaker dependent AAI model (SD AAI): train and
test in a speaker specific manner using same speaker acoustic-
articulatory data, b) Generic Model AAI model (GM AAI): one
single AAI model is trained and tested by pooling data from
all 20 speakers, c) GM AAI with speaker specific fine-tuning
(GM-FSD AAI): the GM AAI model is further fine-tuned with
speaker specific acoustic-articulatory data, which results in an
AAI model for each speaker, d) Speaker condition using one-
hot vector (SC AAI): one single AAI model is trained similar to
the GM, but we provide auxiliary speaker specific information
using a 20-dim one hot vector along with the acoustic features.
e) Speaker condition using x-vector (xSC AAI): In the proposed
approach we condition AAI with x-vectors while training with
20 speakers’ acoustic-articulatory data.

In unseen speaker evaluation, we use the models trained
with 20 speakers acoustic-articulatory data but for testing, we
use sentences from 10 unseen speakers. We consider the fol-
lowing models: a) GM and xSC AAI models: trained with 20
speakers (F1-F10; M1-M10) tested with 10 speakers (F11-F15;
M11-M15), b) uSC AAI: as a baseline, we use the SC AAI
model trained with 20 speakers data. However for testing SC-
AAI with unseen speakers, one-hot representation is not pos-
sible. So, we trained a speaker identification network (SID)
with 20 speakers’ acoustic data. For a test sentence of an un-
seen speaker, we take softmax output of the SID network as a
speaker identity vector for SC AAI models. We hypothesize
that by this approach (uSC AAI), we could represent an unseen
speaker as a combination of speakers used for training SC AAI
and SID networks.
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Figure 3: Visualizations of x-vector speaker embeddings using
t-SNE for 30 speakers used in this work.

Hyper-parameter details and neural network training: To
perform experiments with xSC AAI, we choose a dense layer
with 200 units which takes 13-dim MFCC as an input. For

Table 1: RMSE and CC averaged across all the articulators and
speakers (M1–M10 and F1–F10) with different AAI models in
the closed-set (seen speakers) evaluation

SD AAI GM AAI GM-FSD AAI SC AAI xSC AAI
CC

(SD)
0.8361
(0.020)

0.8608
(0.018)

0.8699
(0.021)

0.8721
(0.019)

0.8736
(0.019)

RMSE
(SD)

1.166
(0.076)

1.085
(0.072)

1.057
(0.083)

1.049
(0.077)

1.044
(0.076)

speaker embedding layer, where input is a 512-dim x-vector,
we choose a dense layer with 32 units. For the BLSTM, we use
3 hidden layers with 256 dim output units in each layer. The
BLSTM layer output is fed to a time-distributed linear regres-
sion layer with 12-dim output. For training, we minimize mean
squared error, and early stopping is performed based on the val-
idation loss. x-vectors are computed using Kaldi toolkit [29].
We used a pre-trained model trained on the VoxCeleb database
following the recipe “egs/voxceleb/v2” in Kaldi [30]. To assess
the discriminative ability of the extracted x-vectors across all
30 speakers, Fig. 3 illustrates the visualization of x-vectors us-
ing t-SNE [31]. It can be observed that the speaker embeddings
extracted using the x-vector model could discriminate different
speakers. For SID network, we choose two LSTM layers with
150 units each followed by a time distributed dense layer with
100 hidden units and softmax layer at the output. We choose
categorical cross-entropy as the loss function for training the
SID network. All the experiments in this work are performed
using Keras [32] with Tensorflow [33] as back-end. To evaluate
the performance of AAI-models we chose Root Mean Squared
Error (RMSE) and Correlation Coefficient (CC) [24, 16] as
evaluation metrics computed for each articulator separately.

5. Results and discussion
In this section, we present the results of the experiments which
compare the performance of xSC AAI with baseline AAI mod-
els in both seen and unseen speaker evaluations.

Seen speaker evaluations: Table 1 reports CC and RMSE
using xSC AAI model and baseline models which are averaged
across all the articulators and speakers. From Table 1, it is ob-
served that xSC AAI performs better than SC AAI which are
followed by GM-FSD, GM, SD AAI models in terms of aver-
age CC and RMSE. The performance of xSC AAI is on par with
SC AAI and found to be consistent with the results reported in
[17], where it has been shown that the SC AAI using one-hot
encoded speaker conditioning perform better than all the base-
line schemes in the closed-set condition.

Figure 4: CC averaged across all articulators for each of 20
speakers (male and female speakers in top and bottom rows re-
spectively) in the closed-set (seen speakers) evaluation
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Table 2: CC averaged across all the unseen speakers (M11–M15 and F11–F15) for each articulator separately

ULx ULy LLx LLy Jawx Jawy TTx TTy TBx TBy TDx TDy

GM AAI 0.594 0.557 0.664 0.806 0.746 0.764 0.831 0.874 0.851 0.825 0.848 0.820
xSC AAI 0.603 0.602 0.691 0.806 0.740 0.771 0.838 0.876 0.856 0.836 0.854 0.828
SD AAI 0.744 0.701 0.807 0.840 0.846 0.836 0.876 0.889 0.885 0.889 0.884 0.884

Table 3: RMSE and CC averaged across all the articulators and
speakers (M11–M15 and F11–F15) with different AAI models

Unseen Seen
GM AAI uSC AAI xSC AAI SD AAI

CC 0.7655
(0.034)

0.7534
(0.032)

0.7754
(0.031)

0.846
(0.027)

RMSE 1.4075
(0.108)

1.4562
(0.100)

1.3933
(0.100)

1.1506
(0.1026)

different AAI models are shown in Fig. 4 using boxplots, where
in each box bottom edge represents the first quartile, and the
line in the middle represents the median and the upper edge
of the box represents the third quartile. To examine the sta-
tistical significance in the performance difference between the
xSC AAI model and the baseline models, we perform t-test on
the CC values obtained from test sentences in a speaker spe-
cific manner. We observe that across all the speakers, the xSC
AAI model performs significantly (ρ < 0.05) better than the
SD AAI model. Similarly, while comparing xSC AAI with GM
AAI, we observed significant (ρ < 0.05) improvement in per-
formance across all the speakers except for M3 and M7. While
comparing xSC AAI with GM-FSD, significant (ρ < 0.05) im-
provement is only observed in four speakers, namely, M5, F2,
F3, and F8. For the rest of the speakers, the performance of
xSC AAI is on par with GM-FSD. In spite of similar perfor-
mance, the advantage of xSC AAI over GM-FSD would be that
one single model of xSC AAI will capture multiple speakers’
AAI mappings, unlike 20 separate AAI models in the case of
GM-FSD. Similarly, comparing xSC AAI and SC AAI reveals
that there is no statistical (ρ < 0.05) difference in performance
except for M4, M9, and F2 speakers.

Unseen speaker evaluations: For unseen case evaluation,
Table 3 presents the results for 10 speakers in terms of average
CC and RMSE with different models. For unseen condition, we
present the results of GM, xSC AAI, and uSC AAI models. We
also report the performance on these 10 speakers in seen condi-
tion with the SD AAI model for reference comparison. While
comparing uSC AAI with GM AAI, we observe that there is a
drop in performance with uSC AAI. Interestingly, we observe
that using xSC AAI with x-vector performs better than the GM
AAI. While comparing the performance of GM and xSC AAI
models in the unseen case with respective SD AAI models, we
observe there is a relative drop in CC of 10.94% and 9.51% for
GM AAI and xSC AAI, respectively. This indicates that the
drop in CC using xSC AAI model is ∼1.4% less than the GM
AAI model. Fig. 5, reports speaker specific analysis of the AAI
performance in unseen case evaluation in terms of average CC
across all the articulators. We observe that the GM AAI per-
forms better than the uSC AAI model. The representation ob-
tained from SID network in unseen speaker evaluation, utilized
for uSC AAI model, could not generalize well. This might be
due to few speakers (20) used for training SID network. While
comparing xSC AAI with GM AAI, we observe an improve-
ment in performance in the majority of the speakers. Similar
to seen case condition, we perform analysis on results using a

Figure 5: CC averaged across all articulators for each of 10
speakers in unseen speaker evaluation

t-test to asses the statistical significance in the improvement of
xSC AAI over the GM AAI model. We observe that there is
a significant improvement in the performance using xSC AAI
compared to GM AAI for majority of speakers, except for M12,
F12, and F14.

Articulatory specific analysis: We also perform analysis to
compare the performance of xSC AAI in an articulatory spe-
cific manner. Table 2, reports the performance of AAI models
in terms of CC averaged across 10 unseen speakers. We also re-
port SD AAI performance results of 10 speakers as a reference
during the comparison. We can observe that in subject indepen-
dent AAI models (GM and xSC AAI) the drop in performance
in CC compared to SD AAI are relatively less for tongue articu-
lators followed by jaw and lips. In unseen case evaluations, we
observe that, in majority of the articulators, xSC AAI performs
better than GM. We further perform a t-test for statistical signif-
icance. It is observed that, for all the articulators except ULx,
LLy , and TTy , there is a significant (ρ < 0.05) difference in
performance between GM and xSC AAI.

The improvements with xSC AAI could be due to the x-
vectors which can encode speaker characteristics using TDNN
trained with a large number of speakers in the VoxCelb dataset.

6. Conclusions
In this work, we experimentally study the benefit of x-vector
conditioning in acoustic-to-articulatory inversion with multiple
speakers’ acoustic-articulatory data for training. Experimental
results revealed that there is no performance drop with x-vectors
compared to one-hot representation in closed-set speaker eval-
uation. In unseen speaker evaluation, xSC AAI using x-vectors
generalizes well to the unseen speakers and performs better than
the baseline uSC AAI and GM AAI models. A limitation of this
work is the number of speakers available for xSC AAI train-
ing, as the acoustic-articulatory data from a large number of
speakers is not available. In future, we will investigate the xSC
AAI performance with respect to the number of speakers, and
also with cross corpus evaluations. It is also interesting to study
the performance of xSC AAI by including the training speakers
from different native languages and patients with speech disor-
ders.

Speaker specific performance in terms of average CC with
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