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Abstract 
For decades, average Root Mean Square Error (RMSE) over all 
the articulatory channels is one of the most prevalent cost 
functions for training statistical models for the task of acoustic-
to-articulatory inversion (AAI). One of the underlying 
assumptions is that the samples of all the articulatory channels 
used for training are balanced and play the same role in AAI. 
However, this is not true from speech production point view. In 
this study, at each time instant, each articulatory channel is 
classified to be critical or noncritical according to their roles in 
the formation of constrictions along the vocal tract when 
producing speech sound. It is found that the training set is 
dominated by the samples of noncritical articulatory channels. 
To deal with the unbalanced dataset problem, several Bi-LSTM 
networks are trained by removing the of noncritical portions of 
each articulatory channels if the training errors are less than 
some dynamic threshold. The results indicate that the average 
RMSE over all the articulatory channels, the average RMSE 
over the critical articulators, and the average RMSE over the 
noncritical articulators can be reduced significantly by the 
proposed method.  
Index Terms: acoustic-to-articulatory inversion, critical 
/noncritical articulatory channel, RMSE, Bi-LSTM  

1. Introduction 
The status of articulators reflects important characteristics of 
speech. Its variation is relative slow and smooth in contrast to 
acoustic features. This makes articulator trajectories themselves 
have potential applications in flexible speech synthesis, speech 
coding, speech recognition, and speech animation. Though 
articulatory movement information is important, collecting 
articulatory movement data is not so easy as collecting acoustic 
signals. It always requires some types of special instruments, 
such as EMA, Ultrasound, MRI etc., which are difficult to be 
used in real application. Hence, to incorporate articulatory 
parameters into real application, it is better to infer articulatory 
movements from corresponding acoustic signals.  

To tackle this issue, for decades, numerous studies have been 
conducted based on synchronously recorded acoustic-
articulatory database, where AAI was formulated as regression 
problems. All of the studies endeavored to design better 
features or devise better models so as to achieve better 
performances. The effects of choosing different popular 
acoustic features (LPC, LSF, FBANK, MFCC, LPCC, PLP, 
RASTA-PLP) [1] , and the effects of with/without dynamic 
features, different window lengths and different levels of 
smoothing of the acoustic temporal trajectories, and 
with/without phoneme information have been investigated[1]. 
While other studies attempted to implement various statistical 
models for the task of AAI. In literature, MLP[2], mixture 
density neural network[3], GMM[4], trajectory HMM[5], deep 
forward trajectory density neural network[6]，bidirectional 

LSTM RNN[7] have been applied to AAI. Most of the studies 
adopted average RMSE over all the articulatory channels as the 
training loss of statistical models, where samples from critical 
and noncritical articulatory channels are treated equally. 

From speech production point of view, gestures define 
phonemes. Gestures consist of the formation and release of 
constrictions in the vocal tract and are defined in terms of task 
dynamics. The movement of articulators produces the 
formation and release of constrictions. Two phonemes will 
contrast if they differ in gestural composition[8]. In articulatory 
phonology, one important aspect of task dynamics is that it is 
the motion of tract variables characterized dynamically. A tract 
variable characterizes a dimension of vocal tract constriction. 
Within some periods, some particular articulators are involved 
in specific gesture and are more critical than other articulators. 
Consequently, consistent movement trajectories will be 
observed for those more critical articulators within those 
periods. Evidences had been found in real articulatory data. 
Papcun et al. [2] found  that the some specific articulatory 
channel of consonants in various vowel-consonant-vowel 
sequences illustrated more steady movement pattern than other 
articulatory channels. The articulatory channel which has 
steady movement patterns are called critical articulator while 
the others are called noncritical articulatory channel. 
Discriminating critical and noncritical articulatory channel is 
widely accepted in the fields of speech production, especially 
for articulatory trajectory modelling task [9].    

Nevertheless, most of the studies of AAI adopted the average 
RMSE over all the articulatory channels to train regression 
models. They blurred the roles of critical and non-critical 
articulators, and ignored the natural distribution of data for 
critical/noncritical articulatory channels as well as its effects on 
the performance of AAI.  

In this study, at first, each articulatory channel is classified 
as critical/noncritical according to its role in the formation of 
constrictions along the vocal tract when producing speech 
sound. Next, a loss function that deliberately weights samples 
is devised to account for the unbalance nature of the examples 
of critical/noncritical articulators when training a Bi-LSTM 
network. At last, the performance of the proposed method, in 
terms of the average RMSE over all channels, average RMSE 
of critical/noncritical channels, are presented. 

2. Dataset 
2.1. The MOCHA database 

MOCHA database is adopted in this study. In MOCHA 
database, 460 British TIMIT sentences were uttered by two 
subjects, fsew0 and msak0. And four data streams were 
recorded: the waveform (16 kHz sampling rate, with 16-bit 
precision) together with laryngograph, electropalatograph, and 
ElectroMagnetic Articulograph (EMA) data. The waveform 
signal and articulatory information are synchronized and output 
to a computer simultaneously.  
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The EMA was used to retrieve the movement of articulators. 
For this purpose, coils were attached to the upper lip(UL), lower 
lip(LL), lower incisor(LI), tongue tip(TT), tongue body(TB), 
tongue dorsum(TD) and velum(V) to track their states when 
speech was producing. Each coil provided the x- and y-
coordinates in the midsagittal plane. In total, 14 channels (V_x, 
V_y, TD_x, TD_y, TB_x, TB_y, TT_x, TT_y, LI_x, LI_y, 
LL_x, LL_y, UL_x, UL_y) of articulatory information were 
recorded. Two additional coils were attached to the nose bridge 
and the upper incisor to serve as the references. The movement 
of coils attached to the articulators in the midsagittal plane were 
sampled with the sampling rate of 500 Hz.  

In addition, phoneme identities and corresponding segmental 
information are offered in the MOCHA dataset by force 
alignment, which make us able to determine whether a specific 
articulatory channel is critical or non-critical with in a particular 
period. 

2.2. Data processing 

Before feeding the synchronized acoustic-articulatory data to 
train and evaluate inversion models, some pre-processing 
procedure are necessary. Firstly, silences at the beginning and 
end of each speech utterance and corresponding EMA file are 
omitted, since articulators can take any status in those silent 
parts.  

2.2.1. Acoustic feature 

The acoustic signals are transformed to MFCC parameters (12 
mel-cepstral+log energy), with the setting of 25ms Hamming 
window, 10ms frame shift, and 26 channels, by HTK. The 
acoustic feature vector for inversion at instant t consists of the 
MFCC coefficients of instant t and those of the preceding and 
following five consecutive acoustic frames. That is the MFCC 
coefficients of 11 consecutive acoustic frames (xt-5,…,xt,…,xt+5) 
are used for constructing the inverse mapping from acoustic 
features to articulatory configuration.   

2.2.2. Articulatory feature 

The EMA data are bidirectionally filtered with a lowpass FIR 
filter, first forward then backward, to avoid the phase distortion. 
The filter used here is a 10-order finite impulse filter with the 
cutoff frequency of 20Hz. The slow varying mean of each 
utterance are obtained by smoothing the trajectory of 460 
utterance’s means with a Savitzky-Golay filter with the order of 
5 and frame size of 121. The mean of each utterance is moved 
to the global mean by subtracting the difference between the 
smoothed mean of each utterance and the global mean. Finally, 
the EMA data is down-sampled to match the frame rate of 
acoustic feature. 

2.2.3. Critical/non-critical articulator 

Different articulator plays different role when producing 
specific speech sounds. For example, tongue tip is critical when 
producing speech sound /t/, while the tongue body and lips are 
allowed to take configurations with relatively large variations. 
Therefore, at the instant of producing sound /t/, tongue tip is the 
critical articulator and the others are noncritical articulators. In 
the case of EMA data, it is mainly the vertical movements of 
articulators cause the formation of constriction in vocal tract. 
As a result, the vertical direction of an articulator is thought to 
be critical in this study.  

The MOCHA database provides the annotation of segmental 
information, where the phone identities as well as their start and 
end instants are offered by force alignment. The phoneme 
identities, corresponding IPA, and the corresponding critical 

articulatory channel are shown in Table 1 with reference to the 
criterions used by Papcun [2] and Okadome [9]. Based on the 
annotation result, for each articulatory channel at each instant, 
the critical articulatory channel is marked with 1, while the 
noncritical articulatory channel is marked with 0. For 
diphthongs and triphthongs, none of the channels are treated to 
be critical since the boundaries between the component vowels 
of diphthong/triphthong are unknown.  

Table 1: Phonemes and corresponding critical articulatory 
channel in the MOHCA database.  

Transcription IPA critical articulatory 
@ [ə] in “was” TD_y 
@@ [ɜ] in “thirty” TD_y 
a [æ] in “Nancy” TD_y 
aa [ɑ] in “hard” TD_y 
b [b] in “by” LL_y 
ch [tʃ] in “chair” TB_y 
d [d] in “hard” TT_y 
dh [ð] in “this” TT_y 
e [ə] in “offensive” TB_y 
f [f] in “for” LL_y 
g [g] in “grade TD_y 
h [h] in “hard” TD_y 
i [ɪ] in “this” TB_y 
ii [i:] in “she” TB_y 
iy [i] in “worry” TB_y 
jh [dʒ] in “Jane” TB_y 
k [k] in “work” TD_y 
l [l] in “lily” TB_y 
m [m] in “may” LL_y 
n [n] in “Jane” TT_y 
ng [ŋ] in “thing” TD_y 
o [ɒ] in “on” TD_y 
oo [ɔ] in “more” TD_y, LL_y 
p [p] in “petrol” LL_y 
r [r] in “bright” TB_y 
s [s] in “this” TT_y 
sh [ʃ] in “she” TB_y 
t [t] in “thirty” TT_y 
u [ʊ] in “woolen” TD_y 
uh [ʌ] in “money” TD_y 
uu [u] in “jewels” TD_y, LL_y 
v [v] in “thieves” LL_y 
w [w] in “work” TD_y 
y [j] in “yell” TB_y 
z [z] in “was” TT_y 
zh [ʒ] in “pleasure” TB_y 

It is not difficult to figure out that an articulatory channel 
does not always play a critical role in the whole speech 
utterance since a speech utterance consists of different 
phonemes that usually have different critical articulatory 
channels. Therefore, in each articulatory channel, only parts of 
it are critical for the phonemes in the utterance. And they are 
called Critical Articulatory Portions (CAP), while the other 
parts are called Non-Critical Articulatory Portions (NCAP). 

The data of subject fsew0 is used in this study. And the set 
of 460 utterance is divided into three separate subsets: a training 
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set with 370 utterances, a validation set with 45 utterances, and 
a testing set with another 45 utterances. 
 

3. Bi-LSTM neural network 
Bi-LSTM is a type of recurrent neural network (RNN), which 
incorporates LSTM units to overcome the limitation of the 
inability of learning long-range context dependencies and 
utilize both forward and backward context information of data 
stream. In Bi-LISTM, forward sequence ℎ"⃗  and backward 
sequence ℎ⃖" are computed by iterating in the forward direction 
from instant 1 to T, and in the backward direction form T to 1, 
respectively. After that, the forward state ℎ"⃗ % and backward state 
ℎ⃖"%  are concatenated and fed to the next layer for further 
processing. Bi-LSTM networks have been successfully used in 
many tasks, such as speech synthesis[10], speech recognition 
[11]. It is well known that articulatory state correlate with the 
past as well as the future acoustic features. Zhu et al. [12] 
applied a Bi-LSTM neural network for the task of AAI and 
achieved the best performance on MNGU0 database. Hence, in 
this study, a Bi-LSTM is applied to the task of acoustic-to-
articulatory inversion. The Bi-LSTM network used in this study 
contains four hidden layers, in which the inputs are connected 
to 2 feedforward layers with ‘Relu’ activation function, then fed 
to 2 BLSTM layers. And each hidden layer contains 300 
neurons. 

4. Loss functions 
As shown in Table 1, for each phoneme, only one channel is 
regarded as the critical articulatory channel in most cases.  As a 
consequence, the numbers of examples for critical and 
noncritical channel are unbalanced. The number of examples 
for noncritical articulatory channels is about 13 times of those 
for critical articulator channels.  

In addition, the critical and noncritical articulatory channels 
are with the different importance in speech sound production. 
When producing a specific speech sound, the coordinates of 
critical articulatory channels should lie in a restricted area, 
while the coordinates noncritical articulatory channels are 
allowed to fall in a much larger region. To keep the phoneme 
identities unchanged from articulation point of view, the errors 
in critical articulatory channel should be much smaller than that 
of the noncritical articulatory channel. 

In previous studies, average RMSE, 𝑅𝑀𝑆𝐸*+,, is taken as 
the loss function for training DNN and Bi-LSTM.  Eq.1 and 
Eq.2 are the routines for calculating the RMSE of each 
articulatory channel and the average RMSE over all the 
articulatory channels. 

𝑅𝑀𝑆𝐸(𝑗) = 1 2
34
∑ 6𝑦89,; − 𝑦9,;=

>34
;?2                               (1) 

𝑅𝑀𝑆𝐸*+, =
2
3@
∑ 𝑅𝑀𝑆𝐸(𝑗)3@
9?2                                      (2) 

where  𝑦9,; is the true articulatory state of ith sample of the j-th 
articulatory channel  𝑦89,;  is the corresponding estimate,	𝑁C  is 
the number of samples of the jth articulatory channel, and  𝑁D is 
the number of articulatory channels. One can see that the 
estimation errors of critical and noncritical articulatory 
channels are treated as of the same importance when training 
models. The error of critical articulatory channel is possible to 
be overwhelmed by that of the noncritical articulatory channels 
since the number of training examples of noncritical 
articulatory channels are much more than those of the critical 
articulatory channels. 

     To deal with these issues, we introduce a loss function as 
shown in Eq. 3-6.  

𝑅𝑀𝑆𝐸%(𝑖) = 1 2
34
∑ 6𝑦8;,% − 𝑦;,%=

>𝐼(i, 6𝑦8;,% − 𝑦;,%=
>)34

%?2      (3) 

𝐼(𝑖, 𝑥) = I0			𝑥 < 𝑇ℎ;			𝑎𝑛𝑑	𝑚	(𝑖, 𝑡) = 0
1				else																																								

                          (4) 

𝑚	(𝑖, 𝑡) = I0					𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑎𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑡	𝑡		1						𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑎𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑡	𝑡										                     (5) 

𝑅𝑀𝑆𝐸*+, =
2
3@
∑ 𝑅𝑀𝑆𝐸%(𝑖)
3@
;?2                                          (6) 

where 𝐼(𝑖, 𝑥)  is an index function, and 𝑇ℎ;  is the dynamic 
threshold of the ith articulatory channel. In contrast to the 
traditional RMSE function, an index function is incorporated 
into the calculation of RMSE. The threshold, 𝑇ℎ;, in the index 
function is decided by the statistic information of the loss of the 
CAP of the ith articulatory channel, if the channel acts as critical 
articulatory channel in some periods while acts as noncritical 
articulatory channel in other periods. Otherwise, 𝑇ℎ; is decided 
by the statistical information of loss of all the data of that 
channel. The purpose of introducing the index function is to 
deliberately discard the loss of some training example so as to 
alleviate the issues mentioned above. In this study, experiments 
are conducted when 𝑇ℎ;  is the minimal, mean, and maximal 
error, respectively.  

5. Results 
Table 2 presents the RMSE per articulatory channel and the 
average RMSE over all the channels obtained by the models 
trained with the proposed loss function. Loss-G denotes the 
RMSE produced by the model trained with loss from all the 
training data. Loss-Min, Loss-mean, and Loss-Max denote the 
RMSEs obtained by the models trained by discarding the loss 
of NCAP that are less than the dynamically defined minimal, 
mean, and maximal loss of CAP of each articulatory channel. 
Loss-crt denotes the RMSE obtained by the model trained with 
the examples of CAP of each articulatory channel only. 

 Table 2: The average RMSE obtained by different training 
paradigm (unit: mm).  

 Loss-
G 

Loss-Min Loss-
Mean 

Loss-
Max 

Loss-
crt 

V_x 0.38 0.38 0.33 0.36 0.45 
V_y 0.47 0.45 0.41 0.45 0.53 
TD_x 1.84 1.52 1.22 1.40 2.10 
TD_y 1.81 1.63 2.10 2.13 2.09 
TB_x 1.89 1.55 1.28 1.46 2,27 
TB_y 1.76 1.67 2.05 2.13 2.48 
TT_x 1.92 1.60 1.34 1.52 2.41 
TT_y 2.02 1.85 2.35 2.47 2.61 
LI_x 0.86 0.79 0.68 0.78 0.98 
LI_y 1.13 1.01 0.91 0.98 1.26 
LL_x 1.24 1.08 0.93 1.06 1.39 
LL_y 2.07 1.81 2.83 3.17 3.65 
UL_x 0.89 0.84 0.75 0.86 0.94 
UL_y 0.95 0.88 0.76 0.88 1.19 
Avg.  1.37 1.22 1.28 1.56 1.73 

If we take a look at the last row of Table 2, one can see that: 
i.) the model trained with Loss-Min achieves the best 
performance; ii.) the model trained with Loss-Mean is the 
second-best; iii.)  the performance of these two models are 
better than that of the model trained with Loss-G; iv.) the 
performance of models trained with Loss-Max and Loss-crt are 
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deliberately discarding part of the training examples of 
noncritical articulatory channels. 

In addition, we take a look at the effects of training a model 
with the proposed method. It is found that: i.) the RMSEs of all 
the 14 articulatory channel decrease if the loss of the examples 
of NCAP less than the minimal loss of CAP are discarded; ii.) 
the RMSEs of 10 out of the 14 articulatory channels decrease if 
the loss of the examples of NCAP less than the mean loss of 
CAP are discarded, while the RMSE of channel TD_y, TB_y, 
TT_y, and LL_y increase; iii.)  the RMSEs all of the 14 
articulatory channels increase if the model is trained with loss 
of examples of CAP only.  

Table 3: The RMSE of CAP obtained by different training 
paradigm (unit: mm).  

 Loss-G Loss-
Min 

Loss-
Mean 

Loss-
Max 

Loss-
crt 

TD_y 1.84 1.38 1.05 0.95 1.04 
TB_y 1.53 1.39 1.12 1.11 1.02 
TT_y 1.90 1.42 1.14 1.05 1.14 
LL_y 1.48 1.32 1.04 0.91 1.01 
Avg.  1.69 1.38 1.09 1.01 1.05 

Table 4: The RMSE of NCAP obtained by different training 
paradigm (unit: mm).  

 Loss-G Loss-
Min 

Loss-
Mean 

Loss-
Max 

Loss-
crt 

V_x 0.37 0.38 0.33 0.36 0.45 
V_y 0.47 0.45 0.41 0.44 0.53 
TD_x 1.84 1.53 1.23 1.40 2.10 
TD_y 1.81 1.74 2.41 2.44 2.38 
TB_x 1.90 1.56 1.28 1.47 2.26 
TB_y 1.79 1.70 2.14 2.22 2.60 
TT_x 1.92 1.60 1.35 1.52 2.40 
TT_y 2.07 2.05 2.82 3.00 3.15 
LI_x 0.86 0.78 0.68 0.78 0.98 
LI_y 1.13 1.01 0.90 0.98 1.26 
LL_x 1.24 1.08 0.94 1.05 1.39 
LL_y 2.14 1.86 2.98 3.34 3.85 
UL_x 0.89 0.84 0.75 0.86 0.94 
UL_y 0.95 0.88 0.76 0.88 1.20 
Avg.  1.39 1.24 1.39 1.48 1.82 

Table 3 and 4 present the corresponding RMSE of CAP and 
NCAP of the articulatory channels obtained by the models 
trained with the proposed loss function, respectively. 
Comparing the result in the 1st column and that of the 2nd 
column in Table 3 and 4, one can see that the RMSEs of both 
CAP and NCAP decrease when the model is trained by 
discarding the loss from NCAP whose training error is less than 
minimal loss of the CAP. 

 Comparing the result in the 1st column and that of the 3rd 
column in Table 3 and 4, one can notice that the RMSEs of CAP 
and NCAP in most of the articulatory channels decrease, except 
NCAP in channel TD_y, TB_y, TT_y, and LL_y. Similar 
results are found when comparing results in the 1st column and 
that of the 4th column in Table 3 and 4.  

Comparing the result in the 1st column and that of the 5th 
column in Table 3 and 4, it is found that the RMSEs of NCAP 
of all the articulatory channels increase, while the RMSEs of 
CAP of all the articulatory channels decrease. 

Then, we take a look on the result of channel TD_y, TB_y, 
TT_y, and LL_y, which sometimes act as noncritical 

articulatory channel while act as critical articulatory channels at 
other instants according to the phoneme it produced. It is found 
that: i.) the RMSEs of the NCAP in channel TD_y, TB_y, TT_y, 
and LL_y decrease at first, then increase drastically (shown in 
Table 4); ii.) the RMSEs of CAP decrease with the increase of 
the dynamic threshold (shown in Table 3). This indicates that 
discarding the loss of examples from NCAP dose reduce the 
prediction error of CAP, while takes the risk of increasing the 
prediction error of NCAP if the articulator channel acts as 
critical articulatory channels in some periods while acts as 
noncritical articulatory channels in other periods. 

6. Conclusions 
In this study, we attempt to incorporate the knowledge of 
speech production into acoustic-to-articulatory inversion. At 
each instant when producing speech sound, each articulatory 
channel is classified as critical/noncritical channel according to 
their roles in the formation of constrictions along the vocal tract 
when producing speech sound. It is found that training set is 
dominated by the examples of noncritical articulatory channels. 
To deal with the unbalanced dataset problem, several Bi-LSTM 
networks are trained by discarding the loss of examples from 
NCAP when the corresponding losses are less than the dynamic 
threshold of their corresponding CAP. The results indicate that 
the average RMSE over all the articulatory channels, the 
average RMSE over the CAP, and the average RMSE over the 
NCAP could be reduced by discarding the loss of examples 
from NCAP if they are less than the minimum error of the 
corresponding critical articulatory channels when training a Bi-
LSTM network. 
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