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Abstract

In this paper, we report a large-scale end-to-end language-
independent multilingual model for joint automatic speech
recognition (ASR) and language identification (LID). This
model adopts hybrid CTC/attention architecture and achieves
word error rate (WER) of 52.8 and LID accuracy of 93.5 on
42 languages with around 5000 hours of training data. We also
compare the effects of using subword-level or character-level
vocabulary for large-scale multilingual tasks. Furthermore, we
transfer the pre-trained model to 14 low-resource languages.
Results show that the pre-trained model achieves significantly
better results than non-pretrained baselines on both language-
specific and multilingual low-resource ASR tasks in terms of
WER, which is reduced by 28.1% and 11.4% respectively.
Index Terms: automatic speech recognition, multilingual, low-
resource, transfer learning, language identification

1. Introduction
End-to-end Automatic Speech Recognition (ASR) methods
have demonstrated favorable results compared to conventional
Hidden Markov Model (HMM) methods [1, 2]. In the previ-
ous literature, various architectures for end-to-end ASR using
either Connectionist Temporal Classification (CTC) [3, 4] or
attention-based encoder-decoder [5, 6]. More recently, Watan-
abe et al. [7] proposed a hybrid CTC/attention architecture,
which benefits from both architectures in training and decod-
ing. Moreover, Nakatani et al. [8] employed the multi-head self-
attention mechanism in a similar Transformer architecture [9].
The system realized significant reductions in the word error rate
(WER) on several public corpora.

Regardless of the architectures, end-to-end systems gener-
ally fold the acoustic, lexicon, and language models into a sin-
gle network. They save the effort on language-specific process-
ing, making it easier to apply them to new languages. Watanabe
et al. [10] first proposed an end-to-end language-independent
model for joint multilingual ASR and language identification
(LID). They trained a hybrid CTC/attention model on 1327
hours of speech data in ten languages and demonstrated compa-
rable/superior performance to language-dependent end-to-end
ASR systems. In addition, models trained in a multilingual
manner may share information across languages, which helps
improve the performance of low-resource language tasks. Zhou
et al. [11] employed Transformer architecture to perform multi-
lingual ASR on low-resource languages and achieved 10% rela-
tive improvement on the baseline. Kannan et al. [12] presented
a large-scale streaming end-to-end model trained on nine In-
dian languages using CTC. Cho et al. [13] showed that transfer
learning could be adopted for end-to-end multilingual models.
In [14, 15, 16, 17], similar empirical results also indicated that
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multilingual architecture could reduce 10-20% relative WER on
low-resource languages.

Inspired by their works, we present this large-scale
language-independent multilingual model based on Trans-
former [9] with hybrid CTC/attention architecture for joint ASR
and LID. We increase the number of languages to 42 and the to-
tal duration of training data to around 5000 hours with over 6
million utterances. The experiments demonstrate promising re-
sults on 42 languages and we obtained significant reductions in
WER when transferred to low-resource languages 1.

2. Model Description
This section briefly introduces our Transformer-based
language-independent multilingual system with hybrid
CTC/attention architecture, which is shown in Figure 1.

2.1. Hybrid CTC/attention Architecture

Similar to [18], we adopt a hybrid CTC/attention architecture,
where the model is composed of three components: a shared
encoder, an attention decoder, and a CTC module.

Multi-task Learning The hybrid architecture is established in
the scheme of multi-task learning. The training process is to
jointly optimize the weight-sum of the decoding loss of atten-
tion model Latt and the CTC loss Lctc [3]. The multi-task loss
function is given by:

L = αLctc + (1− α)Latt, (1)

where hyperparameter α represents the weight of the CTC loss.
Previous research [8, 18] has shown that introducing CTC as an
auxiliary task can help the model learn appropriate alignments
and converge faster.

1Recipes for our experiments (without distributed training) are avail-
able as part of ESPnet: https://github.com/espnet/espnet
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Joint Decoding During decoding, given speech input X , the
final prediction is made based on a weighted sum of log proba-
bilities from both the CTC and attention components:

Ŷ = argmax
Y ∈Y

{λ logPctc(Y |X)+(1−λ) logPatt(Y |X)}, (2)

where λ is a hyperparameter, Pctc(Y |X) and Patt(Y |X) are the
output probabilities of prediction Y from CTC and attention
decoder respectively.

2.2. Language-Independent Architecture

For multilingual ASR tasks, we adopt a language-independent
architecture [10] so that all the target languages can share the
same network architecture and parameters.

Shared Vocabulary The output vocabulary includes characters
or subwords of all the target languages. This setting makes
it possible to train a single network for all languages in a
language-independent manner.

Joint Language Identification To reduce the possibility that
predictions switch between languages, we insert the corre-
sponding language ID (e.g., [en], [fr]) at the beginning of ev-
ery output target during training. Consequently, the model can
learn to first identify the language and then predict the output
text during decoding. This can be regarded as an auxiliary lan-
guage identification (LID) task.

3. Recognition Experiments
We first train and evaluate quadrant-bi (42) lingual ASR sys-
tems. We compare a character and subword unit based model-
ings. The character vocabulary includes 7,381 characters, and
the subword vocabulary includes 15,943 subwords. We tok-
enized the subwords by using the SentencePiece library [19].
Apart from characters/subwords, 60 non-language symbols
such as language IDs and other symbols (e.g., <UNK>) are
also included in the vocabularies.

We then transfer the character-level 42-lingual model to
perform monolingual and quattuordec (14)-lingual ASR on 14
low-resource languages. As the baseline, we train randomly
initialized monolingual and 14-lingual models using the low-
resource languages.

4. Experimental Setup
4.1. Data

Table 1 shows the data we used for 42-language training and
testing. It is from 11 databases including: AISHELL [20], Au-
rora4, Babel, CHiME4, Common Voice [21], Corpus of Spon-
taneous Japanese (CSJ) [22], Fisher Switchboard, Fisher Call-
home Spanish, HKUST [23], WSJ and Voxforge. For the Com-
mon Voice and Voxforge data, we randomly used 80% as a
training set, 10% as a development set, and 10% as a test set.

For the low-resource tasks, we select 14 languages from the
Common Voice database [21] including Arabic (7 hrs), Breton
(5 hrs), Hakha Chin (2 hrs), Chuvash (0.96 hrs), Dhivehi (6 hrs),
Esperanto (35 hrs), Estonian (10 hrs), Indonesian (3 hrs), Inter-
lingua (1 hr), Kinyarwanda (0.25 hrs), Kyrgyz (11 hrs), Latvian
(4 hrs), Sakha (3 hrs) and Slovenian (3 hrs).

4.2. Implementation Details

For all the experiments, 83-dimensional input features are ex-
tracted from the raw speech composed of 80-dimensional filter

Table 1: Corpora used for 42-language experiment.

Language Corpora #Utterances
train dev test

Amharic Babel 37k 4k 10k
Assamese Babel 57k 6k 10k
Bengali Babel 55k 6k 10k
Catalan CommonVoice 68k 9k 8k

Cantonese Babel 72k 8k 10k
Cebuano Babel 39k 4k 11k

Welsh CommonVoice 27k 3k 4k

German Voxforge,
CommonVoice 256k 33k 32k

Dholuo Babel 40k 4k 11k

English
Aurora4, CHiME4,
Fisher Switchboard,
WSJ, CommonVoice

2,760k 83k 68k

Spanish
Fisher Callhome,

Voxforge,
CommonVoice

254k 11k 18k

Basque CommonVoice 26k 3k 3k
Persian CommonVoice 43k 5k 5k

French Voxforge,
CommonVoice 133k 17k 16k

Georgian Babel 34k 4k 9k
Guarani Babel 37k 4k 10k
Haitian Babel 52k 6k 10k

Igbo Babel 35k 4k 10k

Italian Voxforge,
CommonVoice 30k 4k 4k

Japanese CSJ 402k 4k 4k
Javanese Babel 42k 5k 11k
Kabyle CommonVoice 145k 18k 18k
Kazakh Babel 43k 5k 12k

Kurmanji Babel 42k 5k 11k
Lao Babel 60k 7k 11k

Lithuanian Babel 36k 4k 10k
Mongolian Babel 40k 4k 11k

Dutch Voxforge 7k 1k 1k
Pashto Babel 63k 7k 9k

Portuguese Voxforge 3k 0.4k 0.3k

Russian Voxforge,
CommonVoice 20k 3k 3k

Swahili Babel 40k 4k 11k
Tagalog Babel 84k 9k 11k
Tamil Babel 58k 6k 11k
Telugu Babel 39k 4k 11k

Tok Pisin Babel 37k 4k 10k
Tatar CommonVoice 18k 2k 2k

Turkish Babel 74k 8k 10k
Vietnamese Babel 71k 8k 9k
Mandarin
(zh-CN)

AISHELL,
HKUST 621k 18k 13k

Mandarin
(zh-TW) CommonVoice 33k 4k 4k

Zulu Babel 55k 6k 11ks
Sum 6,088k 356k 464k

banks and 3-dimensional pitch features computed every 10 ms
over a 25 ms window. The detailed Transformer configuration
follows the same setting as the big model described in [24]. The
models are trained using Adam optimizer with a varying learn-
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Table 2: Training and decoding configurations for the 42 and
14 language datasets.

Hyperparameters 42-lang. 14-lang.
Training epochs 100 100

Dropout 0.1 0.1
Learning rate factor k 4.5 1.0

Gradient clipping 5 5
Gradient accumulation 1 2

Batch size 1,280 32
Warmup step 25,000 25,000

CTC loss weight α 0.3 0.3
CTC decoding weight λ 0.5 0.5

Beam size 10 10

ing rate lr strategy:

lr = k · d−0.5
model ·min(step−0.5, step · warmup step−1.5), (3)

where hyperparameter k is the learning rate factor, lr linearly
warms up before step reaching warmup step and decreases pro-
portionally to the inverse square root of step afterward.

We employed the ESPnet toolkit [25] to conduct all ex-
periments. The model training and evaluation were performed
using the TSUBAME 3.0 supercomputer 2. To accelerate the
42-language training, we applied PyTorch distributed commu-
nication package 3 to train the model on 10 computing nodes
with 40 NVIDIA TESLA P100 GPUs with a total batch size of
1,280. During the training process, the character-level model
took around 163 hours and the subword-level model took 222
hours. For the fine-tuning experiments, only one GPU was used.
Detailed training and decoding hyperparameters are found in
Table 2.

4.3. Evaluation Metrics

We used word error rate (WER) and character error rate (CER)
as evaluation metrics. To obtain an average over languages,
we weighted the WERs by the amount of test data. In addi-
tion, we evaluated language identification (LID) accuracy for
the language-independent multilingual models. In the event that
there were multiple corpora used for one language, we calcu-
lated the weighted average over those corpora.

5. Results
We first compare the 42-language task’s WERs/CERs and LID
accuracies obtained by models based on character-level and
subword-level vocabularies. The results are shown in Table 3.
We can see that the large-size subword-level vocabulary im-
proves the model’s performance in WER and LID accuracy for
38 and 29 languages, respectively. The average WER was re-
duced from 52.8 % to 49.6 %, and the averaged CER was re-
duced from 27.8 % to 27.2 %. Meanwhile, the average LID
accuracy is increased from 93.5 to 94.0. These results demon-
strate the advantage of introducing subwords.

Next we analyzed the 14 low-resource languages’ WER
obtained by the pre-trained (knowledge transferred) and non-
pretrained (randomly initialized) models fine-tuned for the
language-specific (one language at a time) and language-
independent multilingual (14 languages together) tasks. The re-
sults are shown in Table 4. By comparing the second and fourth

2https://www.gsic.titech.ac.jp/en/tsubame
3https://pytorch.org/docs/stable/distributed.html

Table 3: Word and character error rates (WER/CER) and lan-
guage identification (LID) accuracy of character-based model
(Char.) and subword-baesd model (SubW.). For Cantonese,
Japanese, and Mongolian, we used sentence error rate instead
of word error rate.

WER/CER LID acc.

Language Char. SubW. Char, SubW.
Amharic 61.2/42.6 57.5/40.1 92.1 92.9
Assamese 67.3/44.9 61.4/42.9 81.5 83.6
Bengali 65.0/39.5 60.8/38.5 82.9 81.1
Catalan 40.0/10.6 36.8/9.7 99.1 99.1

Cantonese 99.5/66.6 99.4/65.7 99.8 99.8
Cebuano 63.9/37.4 56.8/35.7 81.5 83.2

Welsh 38.4/12.3 36.4/11.9 96.5 97.7
German 32.5/8.6 30.8/8.1 99.3 99.4
Dholuo 58.4/32.8 52.5/31.3 87.6 86.2
English 21.1/8.6 19.3/8.2 99.3 99.2
Spanish 50.3/19.0 50.8/21.0 98.6 98.9
Basque 37.0/6.8 32.9/6.1 99.4 99.6
Persian 47.9/15.0 44.2/13.6 99.2 99.5
French 44.5/14.2 40.6/13.0 99.4 99.5

Georgian 63.8/36.8 58.6/34.7 86.1 88.9
Guarani 82.3/42.6 78.4/41.0 82.1 83.5
Haitian 63.4/36.5 58.4/34.8 92.8 93.8

Igbo 71.5/41.8 65.0/40.4 84.3 84.2
Italian 40.3/9.9 36.3/9.0 97.9 98.6

Japanese 62.3/7.2 60.5/6.7 100.0 100.0
Javanese 71.6/46.3 65.5/45.2 80.3 82.5
Kabyle 54.7/17.1 52.3/16.4 99.7 99,8
Kazakh 104.2/90.5 103.9/90.8 82.5 81.7

Kurmanji 88.8/52.7 85.3/52.4 90.0 89.9
Lao 53.4/37.3 48.1/34.8 87.6 89.6

Lithuanian 72.2/42.7 69.3/42.1 82.6 84.6
Mongolian 102.5/88.7 103.6/89.3 91.5 92.2

Dutch 54.0/16.8 50.8/16.2 97.8 98.8
Pashto 57.0/35.7 50.8/33.3 93.3 94.7

Portuguese 74.6/28.4 73.4/28.6 97.4 98.2
Russian 90.2/65.9 92.1/66.4 98.8 99.5
Swahili 61.4/32.2 53.7/30.4 79.1 84.9
Tagalog 60.0/38.4 53.7/37.0 87.9 89.5
Tamil 76.0/46.1 70.9/43.6 86.4 87.6
Telugu 80.3/50.0 75.8/47.2 84.6 85.3

Tok Pisin 43.2/28.0 38.3/26.7 91.4 92.8
Tatar 102.8/83.6 103.0/83.3 98.8 98.8

Trukish 76.2/38.1 72.1/37.1 88.9 89.3
Vietnamese 95.7/55.8 94.9/54.9 90.2 91.1

Mandarin(zh-CN) 68.5/14.7 65.4/13.5 99.7 99.7
Mandarin(zh-TW) 76.0/22.5 74.3/21.8 99.9 99.9

Zulu 70.7/37.6 66.9/37.3 94.5 93.9
Weighted Avg. 52.8/27.8 49.6/27.2 93.5 94.0

columns without the pre-training, we see that multilingual train-
ing generally improves the model performance on low-resource
languages. The transfer learning was effective for all the 14
languages, and the lowest WERs were obtained by one of the
pre-trained models. Seven out of 14 languages got the low-
est WER in the language-specific knowledge transfer condition,
while other seven languages got the best result in the language-
independent condition. This was maybe related to the similar-
ity/dissimilarity between languages.

By applying pre-training, the weighted averages of WER
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Table 4: Comparison of language-specific and language-independent multilingual experiments using non-pretrained baselines and
pre-trained models in word error rate (WER) for 14 low-resource languages

Language-specific
w/o pre-train

Language-specific
w/ pre-train

Language-independent
w/o pre-train

Language-independent
w/ pre-train

Arabic 88.8 46.4 56.5 47.8
Breton 90.7 51.9 61.3 50.1

Hakha Chin 86.6 42.6 43.6 34.2
Chuvash 148.0 147.2 104.4 101.8
Dhivehi 95.1 54.7 63.0 55.2

Esperanto 24.9 12.1 28.1 23.5
Estonian 91.6 48.3 68.2 56.4

Indonesian 89.6 50.0 56.0 43.9
Interlingua 107.7 76.6 53.7 39.0

Kinyarwanda 220.1 222.8 101.6 100.5
Kyrgyz 72.6 33.0 68.3 62.9
Latvian 85.7 40.8 102.1 93.5
Sakha 99.6 58.4 102.9 102.5

Slovenian 85.0 79.1 57.0 50.4
Weighted Avg. 83.4 60.0 56.9 50.4
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Figure 2: Confusion matrix of LID accuracies and error rates
for the low-resource languages obtained by the non-pretrained
language-independent multilingual baseline.

were reduced by 28.1% and 11.4% from the baselines on
language-specific and multilingual tasks, respectively. Finally,
Figures 2 and 3 show the confusion matrices of LID accura-
cies and error rates over 14 low-resource languages that were
obtained by the multilingual models with and without pre-
training. We can observe that the model with pre-training gen-
erally achieves higher accuracy in 13 languages. With these
results, we can safely conclude that the pre-trained model effi-
ciently improves the performance on low-resource languages.

6. Conclusions
In this work, we present a large-scale end-to-end language-
independent multilingual model for joint ASR and LID based
on a transformer-incorporating hybrid CTC/attention architec-
ture that is trained with up to 6 million utterances. Our results
are promising with an average WER of 52.8 and an average
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Figure 3: Confusion matrix of LID accuracies and error rates
for the low-resource languages obtained by the pre-trained
language-independent multilingual model.

LID accuracy of 93.5 for 42 languages. We also find that using
a large-size subword-level vocabulary can further improve the
model’s performance in multilingual tasks. Moreover, we show
the significant improvement that large-scale pre-training brings
about in the model’s performance on low-resource languages.

Our future work will include handling the imbalanced train-
ing data in order to utilize data more efficiently. We also will
investigate the effects of linguistic connections (e.g., language
families) between languages in order to further improve multi-
lingual ASR and LID.
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