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Abstract
Automatic speech recognition (ASR) tasks are usually solved
using lexicon-based hybrid systems or character-based acoustic
models to automatically translate speech data into written text.
While hybrid systems require a manually designed lexicon, end-
to-end models can process character-based speech data. This
resolves the need to define a lexicon for non-English languages
for which a standard lexicon may be absent. Korean is relatively
phonetic and has a unique writing system, and it is thus worth
investigating useful modeling units for end-to-end Korean ASR.
Our work is the first to compare the performance of deep neural
networks (DNNs), designed as a combination of connection-
ist temporal classification and attention-based encoder-decoder,
on various lexicon-free Korean models. Experiments on the
Zeroth-Korean dataset and medical records, which consist of
Korean-only and Korean-English code-switching corpora re-
spectively, show how DNNs based on syllables and sub-words
significantly outperform Jamo-based models on Korean ASR
tasks. Our successful application of using lexicon-free model-
ing units on non-English ASR tasks provides compelling evi-
dence that lexicon-free approaches can alleviate the heavy code-
switching involved in non-English medical transcriptions.
Index Terms: end-to-end speech recognition, modeling units,
attention, connectionist temporal classification

1. Introduction
Sequence-to-sequence (seq2seq) learning using attention-based
models has drawn increasing attention for tasks involving se-
quential data such as automatic speech recognition (ASR)
[1, 2, 3]. End-to-end approaches to ASR, in contrast to hy-
brid systems, directly predict character-based units, mitigating
the need to manually design a lexicon. Various acoustic units
have been used as end-to-end seq2seq models on English ASR
tasks, including graphemes [1] which are lexicon-free units,
word-pieces [4], and sentence-pieces [5], as well as lexicon-
related units spanning context-dependent states and context-
independent phonemes [6]. It is evident from previous models
that modeling units critically impact seq2seq models’ perfor-
mances.

The Korean language does not have a standard phoneme set
nor lexicon in contrast to the English language with its CMU
dictionary. Hence, a character-based end-to-end model would
be attractive not only for Korean ASR tasks, but also any lan-
guage without a standard phoneme set or lexicon. The Korean
writing system consists of letters named Jamo, which can either
be a consonant or vowel. These Jamo letters form a syllable
block, a basic Korean character. A lexicon-free modeling unit
can thus be made up of either a Jamo or syllable-based Korean
character.
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While modeling units have been devised for seq2seq learn-
ing [2, 6, 7, 8] for Mandarin Chinese [9, 10], there has yet to be
a study on modeling units fit for Korean ASR. In this work, we
introduce several modeling units applicable to Korean ASR and
compare the performance of a deep neural network (DNN) on
a standard Korean ASR benchmark and Korean-English code-
switching task when using these different units. In particular, we
experiment with Jamo, syllable, Jamo based sub-word, syllable
based sub-word, and byte [7] models, where sub-words are gen-
erated using SentencePiece [11]. Our method alleviates the need
to design a common phoneme set, lexicon, or language model in
developing a code-switching ASR system and can significantly
reduced the cost associated with designing such models. Exper-
iments using a combination of connectionist temporal classifi-
cation (CTC) and attention based decoder as the base DNN ar-
chitecture suggest that a syllable-based sub-word model is ideal
for Korean ASR, and that a combination of syllable-based sub-
word unit and English sub-word unit is best for Korean-English
code-switching tasks.

2. System Overview
2.1. Model Architecture

Our DNN architecture is mainly inspired by the Listen, At-
tend, and Spell (LAS) model [3] and was modified to better
suit our task. As shown in Figure 1, our model is a sequence of
recurrent neural network (RNN) based encoder, attention, and
an RNN-based decoder. The encoder is modified by replacing
sub-sampling layers in LAS with max-pooling operations which
down-sample input signals across both time and frequency axes.
Its RNN part is a 5-layer bi-directional long short term memory
(BLSTM) [12] module with 512 cells followed by linear projec-
tion. The attention module is a 512 dimensional location-aware
mechanism [13] with 10 convolutional channels and filter size
of 100. It takes as input both the encoded signal and the previ-
ous prediction to incorporate the sequence history. The decoder
is a 2-layer LSTM with 512 cells.

We also adopted a joint decoding method which takes the
CTC predictions into account during inference [14]. In order
to combine frame-synchronous CTC probabilities with label-
synchronous attention probabilities, we followed the one-pass
decoding method described in [14].

2.2. Optimization

DNNs were trained to maximize a convex combination of CTC
criterion [15] and attention. Given a L-length character se-
quence c ∈ CL with characters ci ∈ C, CTC is the log-
likelihood of the sequence prediction on a speech input x ∈
XT . Since a character sequence may be shorter than the speech
input, a ‘blank’ symbol b is inserted before, in between, or
at the end of character sequences to obtain the output space
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Figure 1: Joint CTC/Attention ASR.

Y = (C ∪ {b})T . The resulting CTC loss is the negative log-
likelihood of a character sequence

LCTC = − log

(∑
y

∏
t

p (yt|x)

)
, (1)

assuming independence among characters y1, . . . , yT , where
p(yt|x) is the DNN’s prediction for character yt.

An attention loss accounts for the character sequence’s
structure by conditioning each character prediction on its his-
tory:

Latt = − log

(∏
l

p (cl|c1, . . . , cl−1, h)

)
, (2)

where p (cl|c1, . . . , cl−1, h) = A (h, cl−1) is the attention-
based decoder’s output on the encoder’s output h and previous
character cl−1. The resulting objective function is their convex
combination

Ltot = λLCTC + (1− λ)Latt, λ ∈ [0, 1]. (3)

2.3. Modeling Units

2.3.1. Korean Alphabet

Hangul is the Korean writing system which consists of 51 Jamo
letters comprising 30 consonants and 21 vowels. A syllable
block is built as a combination of several Jamo letters and spans
two dimensions. This is illustrated in Fig. 2 where in the first
example, three Jamo letters,ㄱ,ㅏ, andㅂ are combined clock-
wise to form a syllabic block 갑. A syllable block cannot be
a single Jamo letter and is necessarily a group of 2 or three
Jamo letters. The first Jamo letter of a group is called choseong
followed by jungseong. Optionally, a third Jamo letter called
jongseong may be present in a syllable block.

Not all Jamo letters can be used as every element of a syl-
lable block: only 19 Jamo letters can be used as a choseong, 21
vowels for jungseong, and 28 consonants (including none) for
jongseong. While this results in 11, 172 = 19× 21× 28 possi-
ble combinations, a small subset is used in the Korean language.
Thus, we only consider 2, 350 most frequently used syllables.

Figure 2: Illustration of grouping Jamo letters: (left) three and
two Jamo letters are grouped forming a (right) syllable block.

2.3.2. Sub-word Units

Sub-word units are generated by applying SentencePiece [11]
on the aforementioned units: syllable-based Korean character
(right in Fig. 2) and Jamo characters (left) obtained by decom-
posing the syllable blocks into cho, jung, and jongseong. Jamo-
based sub-word units include Jamo characters, (partial) syllable
blocks, and an entire word. Syllable-based sub-word units range
from a syllable block to the entire word. The number of sub-
word units in the SentencePiece model is a user-controllable
hyperparameter.

Table 1: Examples of various units in a sentence, “학교에 간
다 (I’m going to school)”. One of its code-switching versions is
“school에간다”. Token<sp> refers to ‘space’. ‘sw’ stands for
the sub-word unit. A ’/’ is used to distinguish Korean/English
letters.

Units Examples

syllable 학,교,에, <sp>,간,다
jamo ㅎ,ㅏ,ㄱ,ㄱ,ㅛ,ㅇ,ㅔ,<sp>,ㄱ,ㅏ,ㄴ,ㄷ,ㅏ

syll-sw 학교,에 ,간,다
jamo-sw 학ㄱ,ㅛ,ㅇ,ㅔ ,가,ㄴ,다

(Eng.) char I,’,m,<sp>,g,o,i,n,g,<sp>,t,o,<sp>,s,c,h,o,o,l
(Eng.) sw I’m, go, ing, to , s, ch, ool
Jamo/char s,c,h,o,o,l,ㅇ,ㅔ,<sp>,ㄱ,ㅏ,ㄴ,ㄷ,ㅏ
syll/char s,c,h,o,o,l,에, <sp>,간,다

syll-sw/sw s, ch, ool ,에 ,간,다
Jamo-sw/sw s, ch, ool ,ㅇ,ㅔ ,가,ㄴ,다

Table 1 shows a sample sentence tokenized in different
units: syllable, Jamo, syllable-based sub-word, Jamo-based sub-
word unit. When using the SentencePiece model, <sp> is re-
placed with an under-bar token which may or may not be joined
by another character. For the Korean-English code-switching
dataset, hybrid units (bottom of Table 1) with English characters
and sub-word units were used.

3. Experiments
3.1. Datasets

The lexicon-free acoustic models were evaluated on two differ-
ent ASR corpora: Zeroth-Korean [16], developed by a Korean
ASR open source project known as Zeroth [17] based on Kaldi
[18], and Medical Record (MedRec) which consists of a large
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amount of real medical records obtained from Korean hospitals.
Zeroth-Korean contains a morpheme-based segmenter called
morfessor [19] and transcribed audio data. This morphologi-
cally segmented text was used in our experiments. MedRec was
used to evaluate the models on Korean-English code-switching
ASR. Text data in MedRec was morphologically segmented us-
ing an in-house rule-based tool.

Table 2: Statistics for Zeroth-Korean (16 kHz, 16 bit) and Med-
ical Record (8 kHz, 8 bit) corpora. Language (Lang.) is the per-
centage Korean/English alphabets occupy. Column ‘Single (s)’
is the average duration of wave files in seconds.

Zeroth Lang. (%) Total (h) Single (s) # Spkrs

Train 100/0 51.6 8 (3 ∼ 20) 105
Test 100/0 1.19 9 (5 ∼ 20) 10

MedRec Lang. (%) Total (h) Single (s) # Spkrs

Train 40.4 / 51.1 2530 17 (2 ∼ 58) 160
Test 41.6 / 49.2 1.16 25 (2 ∼ 59) 10

Eighty-dimensional log-mel filterbank coefficients were ex-
tracted from 3-dimensional pitch values using the method de-
scribed in [20] with 10ms intervals and a 25ms Hamming
window. These features were normalized using pre-computed
means and standard deviations computed from each training set.

3.2. Implementation

The number of target units used for each modeling unit is shown
in Table 3. A syllable unit (first row) contains 2,350 syllable

Table 3: Number of output classes for each modeling unit.
<symb>includes spoken symbols such as #, %, &, and num-
bers 0 ∼ 9, 10, 100 etc., for a total of 19 classes.

Units # outputs Labels

syllable 2371 syll2350 + <sp>+ <unk>+ <symb>
Jamo 88 jamo68 + <sp>+ <symb>
byte 256 00 ∼ ff

characters with additional <sp>, <unk>, and <symb> to-
kens. Since an unknown token is absent in the Jamo-based sys-
tem, only <sp> and <symb> were added to 68 Jamo charac-
ters for the Jamo unit model. No extra labels were added for
the byte unit [7] model. Sub-word units were generated using
SentencePiece with 3k and 6k target sets on a syllable-based
text, and 2k and 3k targets on Jamo-based text. Two common
tokens, <blk> for CTC and <sos/eos> indicating the begin-
ning/end of a sentence, were added for all modeling units in-
cluding sub-word sets for the attention-based decoder. For the
Korean-English code-switching ASR task, an apostrophe token
was included for a total of 27 classes. These additional classes
resulted in a model having 39M to 49M parameters, depending
on the number of target labels.

The convex combination parameter λ in Eq. (3) was set as
0.2. Implementations were done using the ESPnet toolkit [21]
and Chainer CTC. Unigram label smoothing [1] was employed
to help training, and the models were optimized using Adadelta
[22] with gradient clipping. Beam search was used for infer-
ence, with a beam width set as 30.

4. Results and discussion
Tables 4 and 5 show the unit (UER), word (WER), and sentence
error rate (SER) of the joint CTC/Attention model for Zeroth-
Korean and MedRec, respectively, using 5 different modeling
units: syllable, jamo, syllable-based sub-word, jamo-based sub-
word, and byte.

Table 4: UER, WER, SER (%) of joint CTC/Attention model on
the Zeroth-Korean test set using different modeling units.

Units UER (%) WER (%) SER (%)

syllable 1.8 2.6 3.3
jamo 6.3 19.9 83.6

syll-subword (3k) 3.0 3.2 5.0
syll-subword (6k) 2.3 2.5 3.3

jamo-subword (2k) 75.3 4.1 4.8
jamo-subword (3k) 4.2 4.3 4.4

byte 2.5 4.4 13.1

The syllable-based sub-word unit model achieved the best
average error rate, and the model using Jamo unit had the high-
est WER. This is reasonable, as syllable-based units contain the
largest group of Jamo letters, and can thus utilize long-term lan-
guage dependencies. SentencePiece combines Jamo letters, en-
hancing the model’s performance as shown in the second, fifth,
and sixth rows. These results collectively imply that units con-
taining larger groups are more beneficial than units with smaller
groups such as Jamo letters.

Table 5: UER, WER, SER (%) on test set of Medical Record
when modeling with different modeling units.

Units UER (%) WER (%) SER (%)

(ko) syllable + (en) char 4.6 8.1 66.1
(ko) jamo + (en) char 6.7 16.8 92.3

syll-subword (3k) 9.7 8.2 65.5
syll-subword (6k) 7.7 6.9 64.2

byte 6.4 10.4 77.0

While using Jamo-based sub-word units yields an ex-
tremely high UER value of 75.3%, the model achieves a low
WER value of 4.1% on the Zeroth dataset. This phenomenon
is exemplified in Fig. 3, where a syllable-based model re-
quires learning a fewer combinations than that needed for a
Jamo-based system by using larger groups. Consequently, the
syllable-based model achieves significantly lower UER values
as shown in the fifth and sixth rows in Table 4.

Although Jamo is similar to English letters in that it is either
a consonant or vowel, a syllable-based Korean character with
an English alphabet outperformed the Jamo and English alpha-
bet model on the code-switching task (Table 5). This suggests
that the performance of ASR models is not solely dependent on
the size of letter groups, and that other factors may affect the
model’s performance more, especially on code-switching tasks.
On the other hand, a combination of syllable-based sub-word
unit and English sub-word unit proved the most effective on this
task, which was the case for Korean ASR. Another interesting
observation is that byte unit [7], which can be used universally
across any language, achieved lower WER than Jamo on both
tasks.

1074



Figure 3: A sample word ‘학교’, meaning ‘school’ in English.
Word ‘학교’ can be encoded into various Jamo-based sub-word
units as shown on the left. Only 4 cases are possible for syllable-
based sub-word units on the right.

5. Conclusion and future work
Lexicon-free modeling units for Korean and Korean-English
code-switching ASR tasks were investigated in this study. We
systematically compared the performance of a CTC/attention-
based seq2seq model using syllable, Jamo, and syllable/Jamo-
based sub-word units, and showed how sub-word unit based
on Korean syllables performed the best, which is consistent
with existing code-switching algorithms. Our results suggest
that acoustic modeling of non-English ASR tasks could signif-
icantly benefit from using various lexicon-free approaches. It
would be interesting to see whether our observations stand true
when using a Transformer [23] instead of the CTC/attention-
based network.
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