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Abstract
An essential component of spoken language understanding
(SLU) is slot filling: representing the meaning of a spoken ut-
terance using semantic entity labels. In this paper, we develop
end-to-end (E2E) spoken language understanding systems that
directly convert speech input to semantic entities and investigate
if these E2E SLU models can be trained solely on semantic entity
annotations without word-for-word transcripts. Training such
models is very useful as they can drastically reduce the cost of
data collection. We created two types of such speech-to-entities
models, a CTC model and an attention-based encoder-decoder
model, by adapting models trained originally for speech recog-
nition. Given that our experiments involve speech input, these
systems need to recognize both the entity label and words rep-
resenting the entity value correctly. For our speech-to-entities
experiments on the ATIS corpus, both the CTC and attention
models showed impressive ability to skip non-entity words: there
was little degradation when trained on just entities versus full
transcripts. We also explored the scenario where the entities
are in an order not necessarily related to spoken order in the
utterance. With its ability to do re-ordering, the attention model
did remarkably well, achieving only about 2% degradation in
speech-to-bag-of-entities F1 score.
Index Terms: speech recognition, SLU

1. Introduction
Spoken language understanding is essential for a variety of ap-
plications including interactive spoken conversational systems
and call center analytics that understands agent-customer dia-
logues. Slot filling is the process where we identify the entities
(entity labels (e.g. fromloc.cityname) and values (e.g. Boston)).
This type of information is obviously important for completing
transactions or information seeking requests.

The ATIS (Air Travel Information Systems) [1–3] corpus, a
publicly available corpus from the Linguistic Data Consortium,
has been widely used for SLU research. Initially, the best models
for slot filling used Conditional Random Fields [4], but more
recently the best models use deep learning [5–13]. Surprisingly,
most ATIS studies used text transcripts as inputs. They were
considered SLU simply because the text transcripts were from
actual spoken utterances, and therefore were in a spoken style.
Only a few papers [7, 11, 14] use the speech signal as input.
In this paper, we use speech inputs in an end-to-end spoken
language understanding framework, taking speech as input and
returning entity labels and values.

The goal of SLU is to understand the meaning of what was
spoken, simplified in ATIS to an overall intent and a set of
entities (slots). In contrast with automatic speech recognition
(ASR), where word for word accuracy is desired, SLU may
not care about every word or even about how it was spoken
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(order of entities, word choices, etc.) as long as the meaning is
preserved. As a result, an SLU system may not need training data
in the form of word-for-word transcripts, which are expensive
to obtain for a new domain, assuming we are able to apply
transfer learning using off-the-shelf general-domain ASR models
previously trained on verbatim transcripts.

SLU systems have traditionally been a cascade of an auto-
matic speech recognition (ASR) system converting speech into
text followed by a natural language understanding (NLU) system
that interprets the meaning of the text [15–17]. In contrast, an
end-to-end (E2E) SLU system [17–24] processes speech input
directly into meaning without going through an intermediate text
transcript. In this paper, we demonstrate that it is possible to
train an end-to-end SLU system using a set (or bag) of entities
that do not match the spoken order. This may enable us to train
on speech data from customer calls paired with transaction data
produced by human agents. Imagine a human agent helps a
client with a flight reservation, resulting in a transaction record
containing the set of important entities. This record could serve
as light supervision for training the model we propose. By us-
ing just the speech recording and the bag of entities in training,
we can drastically reduce the cost of data collection and thus
increase the amount of training data. Accurate verbatim tran-
scription of speech data often requires 5-10× real-time for a
human transcriber, not to mention additional costs for labeling
entities. In contrast, the transaction record containing the bag
of entities is obtained during the course of helping the customer
and has no additional cost.

2. SLU use cases: what do entities look like?

For speech recognition, the training data is usually pairs of utter-
ances and verbatim transcripts, as shown as (1) in the example
below. In order to train a slot filling model, such sentences need
to be further labeled with entities, as shown in (2). In this paper,
we wish to train on speech that is paired with just the entities.
In (3), we use the entities presented in natural spoken order for
training. (3) differs from (2) simply in that all words that are not
part of entities are excluded. The entities can be thought of as
the more important keywords; however, it does not mean that
the other words do not carry any meaning. For example, “to”
and “from” clearly are important to determine whether a city is a
destination or departure city. In our model, such words will not
be output, but the speech signal corresponding to those words
will help the model to output the correct entity label. Finally (4)
makes the problem harder, but also more useful: the entities are
not given in spoken order, but instead are sorted alphabetically ac-
cording to entity name. This simulates the semantic frame or bag
of entities concept where the order of entities does not affect the
meaning: {{fromloc.city name: RENO}, {stoploc.city name:
LAS VEGAS }, {toloc.city name: DALLAS}}
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1. Transcript: i want a flight to dallas from reno that makes a
stop in las vegas

2. Transcript+entity labels: i want a flight to DALLAS
B-toloc.city name from RENO B-fromloc.city name that makes a
stop in LAS B-stoploc.city name VEGAS I-stoploc.city name

3. Entities in natural spoken order: DALLAS B-toloc.city name
RENO B-fromloc.city name LAS B-stoploc.city name VEGAS
I-stoploc.city name

4. Entities in alphabetic order: RENO B-fromloc.city name
LAS B-stoploc.city name VEGAS I-stoploc.city name DALLAS
B-toloc.city name

3. Adapting ASR models into SLU systems
Given the different ways in which SLU data can be transcribed,
we investigate various methods to train an SLU system. Starting
from a pre-trained ASR model, we explore several design choices
to understand how two different kinds of E2E models behave
when used to model the various kinds of SLU data. Each possible
training procedure employs one or more of the following steps.

1. ASR model adaptation to domain data (ASR-SLU
adapt): Given that an off-the-shelf ASR model is likely
trained on data that is acoustically different from the SLU
data, a useful initial step is to adapt the ASR system. This
step, which only uses verbatim transcripts, adapts the model
to the novel acoustic conditions, words, and language con-
structs present in the SLU domain data. In model adaptation,
one may use both the original general purpose ASR data
(GP-ASR) and the domain data to provide better coverage of
the ASR output units than adapting only on the domain data.

2. Joint ASR and SLU model training (joint ASR+SLU): In
this step, entity labels are introduced into the training pipeline
along with the full transcripts. This step is a form of curricu-
lum learning [23, 25] that gradually modifies an off-the-shelf
ASR model into a full fledged SLU model. What is novel
in this step is that the model is now trained to output non-
acoustic entity tokens in addition to the usual graphemic or
phonetic output tokens. For GP-ASR data, the targets are
graphemic/phonetic tokens only, whereas for the SLU domain
data, the targets also include entity labels. Although this step
is a natural progression in building the final SLU model, it
can be skipped if sufficient SLU resources are available.

3. SLU model fine tuning (fine tune SLU): In this final step,
a model from step 1 or 2 above is fine tuned on just the SLU
data to create the final SLU model. As described earlier, the
entities that need to be recognized by the final SLU model
might take different forms: within a full transcript, entities
only in spoken order, or entities only in alphabetic order.

4. Building End-to-End SLU models
Using the training procedure described above, we develop two
variants of end-to-end SLU systems for the ATIS task that at-
tempt to directly recognize entities in speech without intermedi-
ate text generation and text-based entity detection.

4.1. SLU Data and Evaluation Metric

We used the standard ATIS training and test sets for our experi-
ments: 4978 training utterances from Class A (context indepen-
dent) training data in the ATIS-2 and ATIS-3 corpora and 893
test utterances from ATIS-3 Nov93 and Dec94 data sets. The
entity labeled text data is found in LDC2019T04, but there are

no pointers to corresponding audio files. Only 518 (out of 893)
test utterance audio files were found by [7]. We managed to find
all 893 test audio files and 4976 (missing 2) training audio files,
in the variety of spontaneous speaking mode, recorded with the
Sennheiser microphone.

The 4976 training utterances comprise∼9.64 hours of audio
from 355 speakers. The 893 test utterances comprise ∼1.43
hours of audio from 55 speakers. The data was originally col-
lected at 16 kHz, but we downsampled to 8 kHz to better model
telephony use cases and so we could use off-the-shelf ASR mod-
els trained on conversational telephone speech. To better train
the proposed E2E models, additional copies of the corpus are
created using speed/tempo perturbation. The final training cor-
pus after data augmentation is ∼140 hours of audio data. To
simulate an additional practical use case, we create a second
noisy ATIS corpus by adding street noise between 5-15 db SNR
to the clean recordings. This ∼9.64 hours noisy data set is also
extended via data augmentation to∼140 hours. A corresponding
noisy test set is also prepared by corrupting the original clean
test set with additive street noise at 5 db SNR.

We measure slot filling performance with the F1 score.
When using speech input instead of text, word errors can
arise. The F1 score requires that both the slot label
and value must be correct. For example, if the refer-
ence is toloc.city name:new york but the decoded output is
toloc.city name:york, then we count both a false negative and
a false positive. It is not sufficient that the correct slot label
is produced: no “partial credit” is given for part of the entity
value (york) being recognized. The scoring ignores the order of
entities, and is therefore suitable for the “bag-of-entities” case
we study. Our scoring script was tested on text-input systems
and gave identical values as the standard scoring scripts.

4.2. Evaluating CTC based SLU models

To allow the SLU model to process entities and corresponding
values independent of an external language model, we first con-
struct a word CTC model on general purpose ASR data with
the recipe steps presented in [26, 27] and using 300 hours of
Switchboard (SWB-300) data. We then explore different train-
ing recipes to build CTC based SLU models.

Our first experiment assumes that we have both verbatim
transcripts and entity labels for the SLU data and uses all three
training steps. The ASR-SLU adapt step is performed as fol-
lows. The output layer of the ASR model, which estimates scores
for 18,324 word targets and the blank symbol, is replaced with a
randomly initialized output layer that estimates scores for 18,642
word/entity targets and the blank. The weights of the remaining
6 LSTM layers, each with 640 units per direction, and a fully
connected bottleneck layer with 256 units are kept the same. The
model is then trained on a combined data set of 300 hours of
SWB GP-ASR data and 140 hours of clean ATIS data. Note that
in this step, although the output layer has units for entity labels,
the training targets are only words. In the joint ASR+SLU step,
entity labels are introduced into the training transcripts and a
joint ASR-SLU model is trained on the SWB+SLU data, starting
from the final weights from the ASR-SLU adapt step. In the
third and final fine tune SLU step, the joint ASR-SLU model is
fine tuned on just the 140 hours of ATIS SLU data.

In experiment [1A] of Table 1, we evaluate this model on
the clean test ATIS data. Given that the SLU model is a word
CTC model, we do not use an external LM while decoding;
instead, a simple greedy decode of the output is employed. This
initial model has an F1 score of 91.7 for correctly detecting
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entity labels along with their values. In experiment [2A], we
develop a similar SLU model with full verbatim transcripts along
with entity labels, but we skip the ASR-SLU adapt and joint
ASR+SLU adapt steps. We initialize the model with the pre-
trained SWB ASR model and directly train the SLU model.
This model also achieves 91.7 F1 score, suggesting that the
curriculum learning steps may not always be required.

Table 1: ATIS bag-of-entities slot filling F1 score for speech
input using CTC and Attention based models

Training Data Adapt CTC Attention

[1A] Full transcripts Y 91.7 92.9
[2A] Full transcripts N 91.7 93.0
[3A] Entities, spoken order Y 92.7 92.8
[4A] Entities, spoken order N 91.5 92.6
[5A] Entities, alphabetic order Y 73.5 90.9
[6A] Entities, alphabetic order N 61.9 90.6

In the next set of experiments we investigate how impor-
tant verbatim transcripts are for the training process. After the
joint ASR+SLU step of experiment [1A], in experiment [3A],
we train an SLU model that recognizes just the entity labels
and their values in spoken order. We observe that the model
learns to disregard words in the signal that are not entity values,
while preserving just the entity values along with their labels.
This model performs slightly better than full transcript model in
[1A]. We extend this experiment in [4A] by removing the use
of transcripts entirely in the training process. This SLU model,
after being initialized with a pre-trained ASR model, is trained
directly to recognize entity labels and their values without any
curriculum learning steps or verbatim transcripts. The model
drops slightly in performance, but remains on par with the base-
line systems. Finally, we train SLU systems on the much harder
task of recognizing alphabetically sorted entity labels and their
values. After the joint ASR+SLU step of experiment [1A], in
experiment [5A] we train an SLU model that recognizes just the
entity labels and their values, but now in alphabetic order. In
experiment [6A] a similar model is trained, but without any cur-
riculum learning steps. On this task, the performance of the CTC
model drops significantly as it is unable to learn from reordered
targets. With the curriculum learning steps, the results in [5A]
are better, but still much worse than the baselines.

4.3. Evaluating Attention based SLU models

The attention models for SLU are initialized with a state-of-the-
art ASR model developed for standard Switchboard ASR task.
This model uses an encoder-decoder architecture in which the
encoder is an 8-layer LSTM stack using batch-normalization,
residual connections, and linear bottleneck layers [28–31]. The
decoder models the sequence of BPE units estimated on charac-
ters [32], and consists of 2 unidirectional LSTM layers. One is a
dedicated language-model-like component that operates only on
the embedded predicted symbol sequence, and the other jointly
processes acoustic and symbol information. The decoder applies
additive, location aware attention [33], and each layer has 768
unidirectional LSTM nodes. As has been shown in [34], exploit-
ing various regularization techniques, including SpecAugment,
sequence-noise injection, speed-tempo augmentation, and vari-
ous dropout methods [35–40], results in state-of-the art speech
recognition performance using this single-headed sequence-to-
sequence model.

To recognize entities, the ASR model is adapted similar to

the CTC model, following the steps of Section 3. In contrast
to the CTC model, which uses word units, the attention model
uses a smaller inventory of 600 BPE units and relies on the
decoder LSTMs to model longer sequences — the attention
based model has an inherent long-span language model. After
the initial ASR model is trained on Switchboard, the subsequent
adaptation and transfer learning steps used only the ATIS data
without any Switchboard data. Because the attention model
operates at the sub-word level, and all new words appearing in
the ATIS transcripts can be modeled using these sub-word units,
no extension of the output and embedding layer is needed in the
first ASR-SLU adapt step. We skip the joint ASR+SLU step
and proceed directly to the fine tune SLU step, where the output
and the embedding layers of the decoder must be extended with
the entity labels. The softmax layer and embedding weights
corresponding to the entity labels are randomly initialized, while
all other parameters, including the weights which correspond
to previously known symbols in the softmax and embedding
layers, are copied over from the ASR model. Having no out-of-
vocabulary words, sub-word level models are ideally suited to
directly start the adaptation process with step 3 of Section 3. All
adaptation steps use 5 epochs of training.

The last column of Table 1 shows the slot filling F1 score
for attention based SLU models. In experiment [1A], an at-
tention based ASR model trained on Switchboard-300h is first
adapted on the clean ATIS data to create a domain specific ASR
model. On the test set, the word error rate (WER) using the base
SWB-300 model is about 7.9% which improved to 0.6% after
adaptation. This ASR model is then used as an initial model
for transfer learning to create an SLU model. The F1 score is
comparable to that of the CTC model. In experiment [2A], we
skip the ASR adaptation step and directly use the SWB-300
ASR model to initialize the SLU model training. In this scenario,
there is no degradation in F1 score. There is no difference in
SLU performance whether the model is initialized with a general
purpose SWB-300 ASR model (WER=7.9%) or with a domain
adapted ASR model (WER=0.6%).

We next consider the effects of training transcription quality
or detail. Using transcripts that contain only entities in spoken
order ([4A]), we obtain F1 scores that are almost the same as
using full transcripts ([1A]). When training transcripts contain
entities in alphabetic order (possibly different from spoken order)
([6A]), there is a 2% degradation in F1 score, from 92.9 to 90.9.
This result is much better than that for the CTC model (73.5),
reflecting the re-ordering ability of attention based models. As
before, adding an extra step of ASR model adaptation ([3A] and
[5A]) with verbatim transcripts made little difference. This is
encouraging, since we are assuming we are only given entities
in the training transcripts.

Figure 1 shows the attention plots for the utterance “i would
like to make a reservation for a flight to denver from philadelphia
on this coming sunday” with three different attention models:
(a) ASR model, (b) SLU in spoken order, and (c) SLU in al-
phabetic order. The attention for (b) is largely monotonic with
attention paid on consecutive parts of the audio signal corre-
sponding to BPE units of keywords in the entities. There are
gaps reflecting skipping over non-entity words. In (c), the atten-
tion is piece-wise monotonic, where the monotonic regions cover
the BPE units within a keyword. Since the entities are given in
an order different from spoken order, the plot shows how the
model is able to associate the correct parts of the speech signal
with the entities. In addition, at around 2 seconds, attention was
paid to the phrase “make a reservation” which is predictive of
the overall intent of the sentence “flight.” (Intent recognition is
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Table 2: ATIS bag-of-entities slot filling F1 score for speech
input with additive street noise (5dB SNR)

Training Data Adapt CTC Attention

[1B] Full transcripts Y 85.5 92.0
[2B] Full transcripts N 79.6 91.3
[3B] Entities, spoken order Y 88.6 91.2
[4B] Entities, spoken order N 86.5 89.6
[5B] Entities, alphabetic order Y 73.8 88.8
[6B] Entities, alphabetic order N 68.5 87.7

Table 3: Effect of different amounts of data used to pre-train the
ASR model used in initializing SLU model training

ASR Training Attention
None 78.1
Switchboard 300h 92.6
Switchboard 2000h 93.8

left out of this paper for simplicity and due to lack of space.)

4.4. Effect of Acoustic Mismatch

In a next set of experiments (Table 2), we use the noisy ATIS cor-
pus as the SLU data set and repeat the CTC based experiments
conducted earlier. This set of experiments introduces additional
variability to the training procedure with realistic noise in both
training and test. Further, it increases the acoustic mismatch be-
tween the transferred model and the target domain. The general
trends for the CTC model observed in Table 1 are also observed
in Table 2: (a) ASR transcript based curriculum training is effec-
tive; and, (b) entity labels can be recognized reasonably well in
spoken order, but the performance is worse when the entity order
is different. In experiments like [2B], the mismatch between the
SLU data and the ASR data affects the performance of models
that are only initialized with mismatched pre-trained models and
have no other adaptation steps. The noise distortion in general
causes these systems to drop in performance compared to the
performance results in matched conditions.

Looking at the results in Table 2 for attention based SLU
models in more detail, we note that there is an absolute degra-
dation of 4.3% in F1 score when we compare a model trained
on full transcripts ([1B] F1=92.0) to one trained on entities in
alphabetic order ([6B] F1=87.7%). While this is a significant
drop in performance, it is much better than the CTC result of
([6B] F1=68.5). Compared to the clean speech condition, we
also come to a different conclusion regarding the utility of ASR
adaptation. We see about 1% improvement in F1 score when we
are able to use an adapted ASR model instead of the base SWB-
300 model to initialize SLU model training. On the noisy test set,
using the base SWB-300 model results in WER=60%, whereas
the ASR model adapted on noisy ATIS data gives WER=5%. It
is remarkable that using these two very different ASR models to
initialize the SLU model training leads to only a 1% difference
in F1 scores for the final models.

4.5. Effect of the Amount of Pre-training Data

Table 3 shows how the amount of data used to train the ASR
model for initializing SLU training affects the final F1 score.
Here we show only results for attention-based SLU models
trained on entities in spoken order for clean speech. We saw
earlier that ASR adaptation on domain data does not always help.
But here, using 2000h instead of 300h for the initial ASR model
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Figure 1: Attention plots for the utterance “I would like to make
a reservation for a flight to Denver from Philadelphia on this
coming Sunday”: (a) ASR; (b) SLU in spoken order; (c) SLU in
alphabetic order.

improves the F1 score by about 1%, most likely due to increased
robustness of the model to unseen data: the unadapted WER on
the ATIS test set is 3.1% (SWB2000h) vs. 7.9% (SWB300h). In
contrast, when we directly train the SLU model from scratch,
the best we could do was about F1=78.1. When SLU data is
limited, these experiments demonstrate the importance of ASR
pre-training on a broad range of speech data, not necessarily
related to the final SLU task.

5. Conclusions and Future Work
In this paper we have investigated how various E2E SLU models
can be built without verbatim transcripts. We have shown the
importance of using pre-trained acoustic models and curriculum
learning to build these systems. Using clean and noisy versions
of ATIS, we explored the effects of entity order and acoustic mis-
match on performance of these systems. This study shows that
E2E systems can indeed be trained without verbatim transcripts
and can predict entities reliably even if trained on transcripts
where entities are not necessarily given in spoken order. Our
results provide useful insights to building better SLU systems in
practical settings where full transcripts are often not available
for training and the final SLU systems need to be deployed in
noisy acoustic environments. The current study was limited to a
setting with context independent utterances. Future research may
involve building SLU systems that operate on full conversations,
rather than single utterances, where more complex linguistic
phenomena like co-reference and entity linking are present.
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