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Abstract

A modern Spoken Language Understanding (SLU) system
usually contains two sub-systems, Automatic Speech Recogni-
tion (ASR) and Natural Language Understanding (NLU), where
ASR transforms voice signal to text form and NLU provides in-
tent classification and slot filling from the text. In practice, such
decoupled ASR/NLU design facilitates fast model iteration for
both components. However, this makes downstream NLU sus-
ceptible to errors from the upstream ASR, causing significant
performance degradation. Therefore, dealing with such errors
is a major opportunity to improve overall SLU model perfor-
mance. In this work, we first propose a general evaluation crite-
rion that requires an ASR error robust model to perform well on
both transcription and ASR hypothesis. Then robustness train-
ing techniques for both classification task and NER task are in-
troduced. Experimental results on two datasets show that our
proposed approaches improve model robustness to ASR errors
for both tasks.

Index Terms: spoken language understanding, ASR error ro-
bustness, Marginalized CRF

1. Introduction

Personal assistants, such as Siri, Google Assistant, and Alexa,
fulfill an incoming user requests through the use of a Spoken
Language Understanding (SLU) system. A standard modern
SLU system contains at least two major components ASR and
NLU. During interaction with these assistants, human voice is
first transcribed to either text form or lattice by ASR and then
interpreted by NLU. During the interpretation stage at NLU,
each utterance' is assigned an intent from an Intent Classifier
(IC) model and slots from each utterance are labelled by an
Named Entity Recognition (NER) model, also known as a se-
mantic frame in [1, 2]. As an example, “what is the weather in
Boston today” is mapped to a get_weather intent and slots
of city:Boston and date:today.

In practice, both ASR and NLU are decoupled for fast
model iteration and both are trained in a supervised manner with
a dataset of voice signals, human-transcriptions and human-
annotations based on transcriptions. In this dataset, voice sig-
nals and human-transcriptions are used to improve the ASR per-
formance where voice signals serve as input and transcriptions
as output. Similarly, transcriptions and annotations are used to
boost the NLU accuracy.

This decoupled design allows ASR and NLU to scale at
their own speed, however, the cascade design propagates and
even magnifies upstream ASR error into downstream NLU.
Moreover, NLU models built in this manner has never seen
ASR errors in offline training and evaluation while when de-
ployed in practice, it takes ASR outputs or ASR hypotheses as
inputs which inevitably contains ASR errors and hence NLU
model performance is suboptimal. A common ASR error is due

!In this paper, we only use ASR 1-best.
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to homophones, for example,“buy the first item” is often in-
correctly recognized as “by the first item”; and “bye WW?>” as
“buy WW”. For an NLU trained in the aforementioned manner,
a change from buy to by can easily modify the intent classi-
fication result from Shopping to Global. More details on
ASR errors and ASR error induced NLU errors are included in
Sec. 2.

To increase the NLU robustness, a straightforward ap-
proach is to change the training data: instead of training on
the ASR error free transcriptions, NLU models can be trained
on annotated ASR hypotheses. However, this approach is not
practical. First, the ASR model updates regularly and its error
distribution drifts along with those updates, the effort spent on
annotating the ASR hypotheses will, therefore, be useless. Sec-
ond, annotating the ASR hypotheses which contains ASR errors
is a more time-consuming effort than annotating the error-free
transcriptions. Finally, the original semantics of user’s input can
change significantly due to an ASR error.

Prior work on solving this problem mostly relies on using
ASR n-best hypotheses instead of 1-best and through rerank-
ing to recover from ASR errors [3, 4, 5, 6, 7, 8]. After the
deep learning based approaches became mainstream [9, 10], a
much more variety of approaches have been proposed. One di-
rection is to design an end-to-end SLU system that interprets
voice signal directly without the need of the intermediate error-
prone step which converts voice signal to text [11, 12, 13, 14],
however, this approach has not yet shown similar performance
compared with the decoupled structure and the coupled struc-
ture makes the model not easy to scale. Other approaches build
ASR-robust representations, for example, using a lattice [15] or
a confusion matrix [16, 17, 18, 19].

In this paper, we first propose an evaluation guideline crite-
rion to measure the model robustness towards ASR errors, then
propose to change both classification and NER model training
technique to account for robustness with respect to (w.r.t.) ASR
errors. For the classification task, we are motivated by the idea
of Virtual Adversarial Training (VAT), and use the ASR hy-
pothesis as adversarial samples. The loss function includes a
Kullback-Leibler (KL) divergence term that penalizes the dif-
ference between predictive distribution from transcription and
from ASR hypothesis. For NER task, our proposed approach
involves a two-step approach where the first step is to pseudo-
label ASR hypotheses using annotated transcriptions and then
use marginalized-CRF to train NER with pseudo-labelled ASR
hypotheses.

2. ASR Error Problem

Deepak Kumar et al. [20] conducted skill squatting attacks on
the ASR engine used by Amazon Alexa. They observed three
common systematic errors: homophones, compound words,
and phonetic confusions.

2Here WW refers to the wakeword.
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For homophone errors, similar to the example used in
Sec. 1, they noticed that Alexa’s ASR often makes error by mis-
recognizing sail as sale, calm as com, main as maine
and etc [20]. As for compound word errors, some com-
pound words are split into constituent words. For example,
outdoors is split into out doors. The most prominent
cause of error is phonetic confusion where an error in the
phonemes leads to a different word. For example, as noticed in
[20], the phonetic spelling of word coal is K OW L, and the
ASR often confuses OW with A0, leading to an incorrect word
call.

In this work, we mitigate the above issue by making the
NLU models robust to ASR errors. Before we move onto model
details and training techniques, we propose a guideline on how
to evaluate robustness towards ASR errors by formulating the
following evaluation criterion:

Model robustness towards ASR errors is only im-
proved given increased performance tested on a
set with ASR errors and no performance degra-
dation on a set without ASR errors.

The idea of this guide is to emphasize model performance on
transcriptions, since increased performance on ASR hypotheses
and decreased performance on transcriptions leads to an over-
fitting on ASR hypotheses. In our results reported in Sec. 5, we
report results on both ASR hypotheses and transcriptions.

The evaluation on ASR hypotheses poses another level of
complexity. In most cases, especially in industry, only anno-
tations on transcriptions are available. For classification task,
one can always assume that transcription and ASR hypotheses
can share the same label, however, for NER task, which targets
token level slot-filling, this is problematic. For example, sup-
pose we have an annotated transcription “what is the weather
in amsterdam netherlands today”, in which we have two slots
city:amsterdam netherlands and date:today and
a corresponding ASR hypothesis “what is the weather in am-
sterdam nether lands today”, where the word “netherlands” is
split into two words. An ideal NER model will be able to recog-
nize the the slot date: today, however, for each other slot, it
can, at its best, output city:amsterdam nether lands,
which is not the same as ground truth and will be considered as
an error in a lot of widely used evaluations metrics, for example,
“slot-F1”’ [21]. Given this unrecoverable error issue when eval-
uating on the ASR hypotheses with ASR errors, in this work,
we define NER model robustness as model performance only
on matched entities (date : today in the previous example).

3. Models

In this section, we provide a detailed description of our NLU
models. We employ the state-of-the-art CNN-LSTM-CRF [22]
model, since it has proven to be effective across many NLP
tasks. All models share the same encoder architecture with an
appropriate decoder for classification and NER.

3.1. Encoder Layer

As illustrated in Fig. 1, our encoder layer mainly uses two Bi-
LSTM layers of size 300 per direction to encode word level
and character level information from both directions. The word
level information is represented by a set of 300 dimensional
word embeddings of size T, {e;}i=1,...,r, pre-trained with
the skip-gram model using fastText [23]. Out Of Vocabulary
(OOV) words are represented as an embedding formed from
an average of 150 least frequent embeddings in the embedding
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Figure 1: Encoder architectures

space. To ensure the generalization capability of pre-trained
word embeddings, word embeddings are fixed during training
process. Also, as indicated by the investigation in [22], charac-
ter level information captures morphological features, we there-
fore uses a set of C' randomly initialized 32-dimension charac-
ter embeddings, {¢; }i=1,... ¢ for each character together with
a CNN layer of 32 trigram filters. Note character embeddings
will be updated during training. Specifically, for the ¢-th token
in an input utterance, its corresponding 300-dim word embed-
ding and 32-dim CNN based character representation are con-
catenated as input to the Bi-LSTM layer
x; = [e;; CNN (c;)] , (1
and its contextual representation through 2 layers of Bi-LSTM
is a also a concatenation of LSTM outputs from both directions

Ti = [Z,E] ,

_>
where h; represents the 300-dim top left to right LSTM output
for the ¢-th input token and il_z from right to left.

3.2. Decoder Layer for Classification

For classification task, the concatenated Bi-LSTM outputs for
each input token r;,¢ = 1, - - - | t, where ¢ denotes the length of
the input, are first sent through a pooling layer which sums up
all individual token representations as utterance representation

t
u = E Ti.
i=1

Note, we choose sum-pooling over average-pooling simply be-
cause it performed slightly better during our experiments. A
fully connected layer of size 600 x 600 with Exponential Linear
Unit (ELU) [24] is connected on top of the utterance represen-
tation before it is sent to the softmax layer.

3.3. Decoder Layer for NER

For NER task, instead of using a softmax at each output as
in [25], the concatenated Bi-LSTM outputs are fed to a linear-
clain Conditional Random Field (CRF) layer as in most state-of-



the-art architectures [22, 26] for NER, to better modeling label
transition probabilities and avoiding label bias problems [27].

4. Robustness Training

Robustness training techniques for both classification task and
NER are discussed in details in this section.

4.1. Classification Task

The classic loss function used in any classification task is the
Negative Log-Likelihood (NLL) loss, which is equivalent to
the Cross Entropy (CE) loss defined as the cross entropy be-
tween the “empirical” distribution p (y;|X;) = 1 [y = ;] and
the “predictive” distribution p (y;| X ):

L
CE (ys; X:,0) = = > p(w| X:) logp (wi| Xi) ,
=1

where 6 is the set of parameters used in the model, L is the total
number of labels and

Xi: |:$21, 7w;'7"' ,ZL‘%{| ;
is a column stack of input representation (in (1)) for each token
in the ¢-th utterance.

Motivated by the VAT proposed in [28, 29], where the
model robustness is achieved through the added KL loss pe-
nalizing the distance between the predictive distribution from
original inputs and its noisy neighbors, we propose to add a KL
term that measures the distance between the prediction distri-
bution from transcriptions and ASR hypotheses, resulting in a
new loss function:

Loss (yi; Xi, Ai,0) = €1 % CE (y:; X4,0)

+ €2 %« CF (y;; Ai, 0)
+e3x KL(p (yi| Ai) ,p (9] X))

where A; denotes the corresponding ASR hypothesis of the i-th
input utterance and {¢; }s_, are a group of weights that control
the relative importance of each loss term.

In the above loss function, the first CE term is designed as
the NLL loss for model performance on the transcription, the
second term is equivalent as adding pseudo-labelled ASR hy-
potheses into training data and the third term aims to improve
model robustness towards ASR hypotheses by forcing models
to predict similar predictions on both transcription and ASR hy-
potheses. From the experimental results, we noticed the combi-
nation of the first and third loss achieves the best model perfor-
mance.

4.2. NER Task

Our proposed approach to improve NER model robustness to-
wards ASR errors relies on the idea of training data augmenta-
tion, which is a widely used technique to improve model per-
formance [30]. Our approaches involves two steps: 1) pesudo-
label utterances where ASR hypotheses are different from tran-
scription; 2) add those pesudo-labelled ASR hypotheses in the
training set with a modified decoder loss function. In this
subsection, we first introduce our proposed Marginalized CRF
model®, then provide an example pseudo-labelling technique we
can use.

3During the preparation of this manuscript, we noticed similar ap-
proach was also used in [31] and further back in [32] to handle similar
situations
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4.2.1. Marginalized CRF

CFR is often used to model the input-output relationship within
a sequence {(;,y;)—1}. The traditional CRF requires a com-
plete set of input and output pairs due to the fact that it uses the
NLL loss [27], where the likelihood is defined as

exp (wT<I> (z, y))

7@Y) 2)

p(yle) =

where
Z(x,S) = Z exp ('wT<I> (z,y))
yeS

is a normalizing term and ® (x, y) is a set of feature vectors.

However, in a lot of cases, the complete annotation is not
available. Given the input, {x;}!_;, its corresponding output
is either unknown or uncertain for some time step ¢. In our
case with pseudo-labelling detailed in Sec. 4.2.2, some pseudo-
labelled tokens in ASR hypotheses do not have corresponding
labels. To train an NER model with such incomplete dataset,
we propose to generalize traditional CRF by marginalizing the
previously defined likelihood over unknown/uncertain labels,
which avoids penalizing uncertain input output pairs. To be
more specific, the revised likelihood is defined as:

p(Yle)= > p(ylz),

yey

where Y is a set of all valid output combinations.

4.2.2. Pseudo-labelling for Marginalized CRF

In general, the pseudo-labelling problem is the following:
Given an annotated sequence {(z;, y;)i—; }, we want to pseudo-

label another non-annotated sequence (%;)!_;, where in our
case, the annotated sequence is annotated transcription while
the non-annotated sequence is its corresponding ASR hypothe-
ses. Here we propose two type of exact match based pseudo-
labelling rules: Token Exact Match (TEM) and Entity Exact
Match (EEM). The TEM rule assigns pseudo-labels per token
and for every token level exact match, i.e. ©; = 2; for some
¢ and [, then g, = y;. In EEM, the exact match is not on to-
ken level but on entity level. For example, given an annotated
transcription:

play welcome to new york by taylor swift
o Song O Artist

The TEM based pseudo-labels on an ASR hypotheses “play
welcome to new by taylor swift” is:

play welcome to new by taylor swift
) Song O  Artist

and the Entity Exact Match (EEM) gives

play welcome to new by taylor swift
o NA O Artist

where “NA” is short for “Not Applicable”, a new label assigned
to handle tokens without a certain label. During the training
process, utterances with such labels will be properly taken care
of using the Marginalized CRF model detailed in Sec. 4.2.1.
Also, it is obvious from the above comparison that the TEM
focuses on recall and the EEM is more conservative and pri-
oritizes on precision. In this paper, we use the EEM to create
pseudo-labels for ASR hypotheses which are different from the
transcription and add these pseudo-labelled ASR hypotheses to
the training set to improve model robustness in cases where the
utterance contains ASR errors.




Table 1: Performance (F1) comparison on ATIS dataset

Task Models Trans. ASR-3.5 ASR-4.0
Baseline 09713 0.9642 0.9615
Classification Train with ASR-3.5 0.9714 0.9686 N/A
Train with ASR-4.0 0.9710 N/A 0.9653
Baseline 0.9603 0.9521 0.9483
NER Train with ASR-3.5 0.9598 0.9537 N/A
Train with ASR-4.0 0.9597 N/A 0.9501

5. Experiments and Results

In this section, we present experimental results to demonstrate
that our proposed training techniques are able to provide en-
hancement to model robustness w.r.t. ASR errors. Evaluation
is performed on both widely used Airline Travel Information
Systems (ATIS) dataset [33, 34, 35, 19] and a private dataset
developed within Alexa. Both the classification task and NER
task are evaluated separately in the following subsections.

5.1. Datasets

We evaluate our proposed approaches using both the ATIS
dataset and the Alexa dataset collected within Alexa Al The
ATIS dataset is a popular benchmark for spoken language sys-
tems which contains audio recordings and the corresponding
annotated transcripts. In the last years, textual version of this
dataset containing 5871 utterances (4478, 500 and 893 utter-
ances in train, validation and test set respectively) was used
to benchmark NLU approaches. We align the original audio
recordings to each of those utterances and use Amazon Tran-
scribe,* a the publicly available speech-to-text service, to ac-
quire the n-best ASR hypotheses for each audio file. Then, we
have constructed two datasets by picking either the ASR with
the best word error rate (WER) or the worst. This resulted in
two datasets with 3.5% (ASR-3.5) and 4% (ASR-4.0) WER
respectively. ATIS dataset is small and represents limited di-
versity in terms of the target domain and slot values. To prove
that our proposed approach works at scale, we also utilized a
much larger set, Alexa dataset, which contains a few millions
of developer generated and annotated transcriptions and their
corresponding ASR hypotheses. The ASR hypotheses in the
Alexa dataset are decoded by the 2019 Alexa ASR model used
to serve the live traffic.

5.2. Classification Task

The classification performance (F1) on ATIS dataset is tabulated
in the top section in Table 1. The first observation is that base-
line model performance degrades as the WER increases on ASR
hypotheses, which highlights the importance of NLU model ro-
bustness towards ASR errors. The second observation is mod-
els trained with ASR hypotheses using our proposed loss per-
formed significantly better (around 0.4% absolute) on their cor-
responding ASR hypotheses and at the same time maintained
similar performance on the transcriptions. Note, some slots are
”N/A” because we expect to learn and evaluate on the set with
similar ASR error patterns.

Table 2 reports an ablation study result on the effect of
hyper-parameters used in the loss function. Note, all results are
relative w.r.t. the baseline model performance on either tran-
scription or ASR. The first row denotes the baseline model per-

“https://aws.amazon.com/transcribe
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Table 2: Relative classification performance (F1) w.r.t. base-
line model performance on Alexa dataset (negative means per-
formance degradation).

model PArAmEters g (%) ASR(%)
€1 €2
baseline 1.0 0.0 0.0 0 0
data augmentation 1.0 1.0 0.0 0 1.76
trainon ASR 0.0 1.0 0.0 -3.76 1.41
proposed model 1.0 0.0 40.0  0.88 441

Table 3: Relative NER performance (slot-F1) w.r.t. baseline
model on Alexa dataset (larger value means better model)

Domain subset ~ Improvements  Improvements
in Alexa dataset  on Trans. (%) on ASR (%)
Music -0.35 0.9
SmartHome 0.19 53
Notifications 0.38 10.72
Shopping 0 2.58

formance where the model is trained with transcriptions. The
second row corresponds to model trained with both transcrip-
tion and ASR hypotheses. The result verifies that data augmen-
tation can improve model robustness. The third row represents
model trained with only ASR hypotheses. Compared with the
baseline result, models trained with only ASR hypotheses per-
forms better on the ASR, while not as well on transcription,
suggesting an overfit on ASR. Our proposed model utilizes only
the first and third component in the loss and achieves the best
performance on both transcription and ASR.

5.3. NER Task

For the NER task, evaluations are performed using the slot-F1
metric [21]. Note, when evaluating on ASRs, we only evaluate
on slots where the entire slot exist in the ASR hypothesis, hence
in some experiments, the F1 on ASRs appears to be higher than
F1 on transcriptions. On the ATIS dataset, where results are
tabulated in the bottom section in Table 1, similar improvements
as the classification task are observed.

As for the Alexa dataset, since the label space is too large,
we first partition the entire dataset into subsets according to their
groundtruth domain labels and train an NER model for each
domain subset. Domain-wise model performance are presented
in Table 3. From all domain subsets, our proposed robust model
achieves better performance on the ASRs while maintaining the
performance on transcriptions.

6. Conclusions and Future Work

In this paper, we addressed the model robustness issue in a de-
coupled SLU system where upstream ASR errors become a bot-
tleneck in the overall SLU model performance. We first de-
fined an evaluation criterion for SLU model robustness towards
ASR errors and then proposed approaches to improve the model
robustness for both classification and NER tasks. We evalu-
ated our proposed approaches on both the public ATIS dataset
and our private dataset based on Alexa data. In all cases, we
observed significant performance improvements compared to
baseline models. In future, we plan to evaluate our proposed
training technique on more advanced contextual representation,
for example, BERT.
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