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Abstract
This paper proposes a network architecture mainly designed for
audio tagging, which can also be used for weakly supervised
acoustic event detection (AED). The proposed network consists
of a modified DenseNet as the feature extractor, and a global
average pooling (GAP) layer to predict frame-level labels at in-
ference time. This architecture is inspired by the work proposed
by Zhou et al., a well-known framework using GAP to local-
ize visual objects given image-level labels. While most of the
previous works on weakly supervised AED used recurrent lay-
ers with attention-based mechanism to localize acoustic events,
the proposed network directly localizes events using the feature
map extracted by DenseNet without any recurrent layers. In the
audio tagging task of DCASE 2017, our method significantly
outperforms the state-of-the-art method in F1 score by 5.3% on
the dev set, and 6.0% on the eval set in terms of absolute val-
ues. For weakly supervised AED task in DCASE 2018, our
model outperforms the state-of-the-art method in event-based
F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of
absolute values, by using data augmentation and tri-training to
leverage unlabeled data.

1. Introduction
Audio tagging is the task of detecting the occurrence of cer-
tain events based on acoustic signals. Recent releases of pub-
lic datasets [1, 2, 3] significantly stimulate the research in this
field. Hershey et al. [4] did a benchmark of different convo-
lutional neural network (CNN) architectures on audio tagging
using AudioSet, which is a dataset consisting of over 2 mil-
lion audio clips from YouTube and an ontology of 527 classes.
DCASE 2017 Task 4 subtask A [2] focuses on audio tagging
for the application of smart cars. The winner of this challenge
used a gated CNN with learnable gated linear units (GLU) to
replace the ReLU activation after each convolutional layer [5].
Yan et al. [6] further improved the above-mentioned architec-
ture by inserting a feature selection structure after each GLU to
exploit channel relationships.

Besides classifying audio recordings into different classes,
AED requires predicting the onset and offset time of sound
events. DCASE 2017 Task 2 [2] provides datasets with strong
labels for detecting rare sound events (baby crying, glass break-
ing, and gunshot) within synthesized 30-second clips. Most
of the state-of-the-art AED models are based on convolutional
recurrent neural network (CRNN). The winner of this chal-
lenge [7] used 1D CNN with 2 layers of long short term mem-
ory (LSTM) layers to generate the frame level prediction. Kao
et al. [8] used region-based CRNN for AED, which does not re-
quire post-processing for converting the prediction from frame-
level to event-level. Shen et al. [9] used a temporal and a fre-
quential attention model to improve the performance of CRNN.
Zhang et al. [10] gathered information at multiple resolutions to

generate a time-frequency attention mask, which tells the model
where to focus along both time and frequency axis.

Training such AED models in a fully-supervised manner
can be very costly since annotating strong labels (onset/offset
time) is labor-intensive and time-consuming. Weakly super-
vised AED (also called multiple instance learning) is an effi-
cient way to train AED models without using strong labels. It
uses weak labels (utterance-level labels) to train a model, where
the trained model is still able to predict strong labels (frame-
level labels) at inference time. DCASE 2017 Task 4 subtask
B [2] provides datasets for weakly supervised AED in driving
environments. The winner of DCASE 2017 challenge used an
ensemble of CNNs with various lengths of analysis windows for
multiple input scaling [11]. He et al. [12] proposed a hierarchi-
cal pooling structure to improve the performance of CRNN. The
effect of different pooling/attention methods on AED and audio
tagging also have been analyzed in previous works [13, 14, 15].
DCASE 2018 Task 4 [16] further extends weakly supervised
AED in domestic environments by incorporating in domain and
out-of-domain unlabeled samples. Lu [17] proposed a mean-
teacher model with context-gating CRNN to utilize unlabeled
in-domain data. Liu [18] used a tagging model with pre-set
thresholds to mine unlabeled data with high confidence.

Although GAP layer has been used with VGG-based fea-
ture extractor for both tagging and localization [19, 20], our ex-
perimental results on DCASE 2017 Task 4 dataset show that
DenseNet [21] works better as a feature extractor. On the other
hand, DenseNet has been used in AED related tasks but not
with GAP for both tagging and localization. Zhe et al. [22]
chunked the input into small segments, and fed each segment
to DenseNet to generate frame-wise prediction for AED. Jeong
et al. [23] used DenseNet for audio tagging but not for local-
ization. This paper proposes a network architecture mainly de-
signed for audio tagging, which can also be used for weakly
supervised AED. It consists of a modified DenseNet [21] as
the feature extractor, and a global average pooling (GAP) layer
to predict frame-level labels at inference time. We tested our
method on DCASE 2017 Task 4 subtask A for audio tagging,
and the proposed method significantly outperforms the state-
of-the-art method [6]. We also tested our system for weakly
supervised AED in driving environments (DCASE 2017 Task
4 subtask B) and domestic environments (DCASE 2018 Task
4). Our method outperforms the state-of-the-art work [24] of
DCASE 2018 Task 4 by using tri-training [25, 26] to leverage
unlabeled data.

2. Proposed Method
The proposed network consists of a modified DenseNet [21] as
a feature extractor, and a GAP layer for predicting frame-level
labels at inference time. In order to generate strong labels with
finer resolution in time at inference, we modified DenseNet to
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Figure 1: System overview of the proposed architecture for weakly supervised AED.

have less pooling operations to maintain the resolution in time
of the extracted feature map. The exact network configura-
tions we used are shown in Table 1. We used DenseNet-63 on
DCASE 2017 Task 4 and DenseNet-120 on DCASE 2018 Task
4, and these architectures are chosen based on our experimental
results on the dev set.

Given weak labels (i.e. utterance-level labels), the network
can be trained under a multi-class classification setting. Since
multiple events of different classes can happen within the same
utterance, we use sigmoid as the activation function with binary
cross-entropy for each class. We use the method proposed by
Zhou et al. [27] to generate class activation maps (CAM) for
predicting strong labels at inference time. The system overview
is shown in Fig. 1. Given an input utterance, a high-level feature
map F (T ×N ×K) can be extracted by DenseNet (i.e. input
to the GAP layer), where T , N , K represent the dimension in
time, feature, and channel. For each channel k, the GAP layer
will generate a response Gk, which is the average of all features
in channel k. These responses are further fed into a dense layer
to predict the classification probability. For a given class c, the
input to the sigmoid is Sc =

∑
k w

c
kGk, where wc

k is the weight
in the final dense layer corresponding to class c for channel k.
The utterance-level prediction for class c is yc = sigmoid(Sc).
wc

k controls the contribution of a given channel k to class c. The
CAM for class c is defined as:

Mc =
∑
k

wc
kFk, (1)

where Fk is channel k of the high-level feature map F .

If one clip has utterance-level probability (yc) greater than
the utterance-level threshold (thu

c , where u represents utter-
ance) at inference time, it indicates the occurrence of target
class c. We can use CAM to predict strong labels. We first
convert the 2D CAM (T ×N ) to a 1D sequential signal (length
T ) by taking the maximum value across the feature axis. Strong
labels of class c are predicted by binary thresholding on the se-
quential signal with a frame-level threshold (thf

c ). Note that the
time resolution of the sequential signal is not the same as one
frame in the input feature to the network (10 ms) due to pooling
operations in the network. Both utterance-level and frame-level
thresholds are set by optimizing the F1 score of weakly super-
vised AED on the development set.

Layers DenseNet-63 DenseNet-120
(for DCASE2017) (for DCASE2018)

Convolution 7 × 7 conv, stride 2

Dense Block (1)
[
1× 1conv
3× 3conv

]
× 3

[
1× 1conv
3× 3conv

]
× 6

Transition (1) 1 × 1 conv
2 × 2 avg. pooling, stride 2

Dense Block (2)
[
1× 1conv
3× 3conv

]
× 6

[
1× 1conv
3× 3conv

]
× 12

Transition (2) 1 × 1 conv
2 × 2 avg. pooling, stride 2

Dense Block (3)
[
1× 1conv
3× 3conv

]
× 12

[
1× 1conv
3× 3conv

]
× 24

Transition (3) 1 × 1 conv, 2 × 2 N/A
avg. pool., stride 2

Dense Block (4)
[
1× 1conv
3× 3conv

]
× 8

[
1× 1conv
3× 3conv

]
× 16

GAP global avg. pooling
Classification 17D dense, 10D dense,

sigmoid sigmoid

Table 1: DenseNet architectures for audio tagging and weakly
supervised acoustic event detection. Note that each “conv”
layer in dense blocks/ transition layers corresponds the se-
quence BN-ReLU-Conv. We set the growth rate to 32 as pro-
posed in the original DenseNet [21]. Less pooling operations
are used compared to the original DenseNet in order to have
finer resolution in time.

3. Experimental Setups

We tested our method on DCASE 2017 Task 4 [2] and DCASE
2018 Task 4 [16]. Both of these two datasets are subsets of Au-
dioSet [1]. The audio clips are mono-channel and sampled at
44.1k Hz with a maximum duration of 10 seconds. We decom-
pose each clip into a sequence of 25 ms frames with a 10 ms
shift. 64 dimensional log filter bank energies (LFBEs) are cal-
culated for each frame, and we aggregate the LFBEs from all
frames to generate the input spectrogram. Note that we train all
models in this work from scratch without any pre-training using
external datasets, which is complied with task rules of DCASE
Challenge.
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3.1. DCASE 2017 Task 4

There are two subtasks in this challenge: (A) audio tagging, (B)
weakly supervised AED. It contains 17 classes of warning and
vehicle sounds related to driving environments. The training
set has only weak labels denoting the presence of events, and
strong labels with timestamps are provided in dev/eval sets for
evaluation. There are 51,172, 488, and 1,103 samples in train,
dev, and eval sets, respectively. We use the same metrics used in
the challenge to evaluate our method. For audio tagging, clas-
sification F1 score is used; for weakly supervised AED, we use
segment-based F1 score [28], and the length of segments is set
to 1 second.

We train DenseNet-63 model shown in Table 1 with adap-
tive momentum (ADAM) optimizer and the initial learning rate
is set to 0.01. The training is stopped when the classification
F1 score on the dev set has stopped improving for 20 epochs.
We further finetune the model for 10 epochs with decreasing
the learning rate to 0.001. The size of minibatch is set to 200.
For the results shown in the paper on DCASE 2017, we use an
ensemble of 5 models by taking the average of output prob-
abilities. These 5 models are trained using the same hyper-
parameters, and the only difference between them is the ran-
domness in weight initialization and the data shuffling during
training.

3.2. DCASE 2018 Task 4

Task 4 of DCASE 2018 challenge consists of detecting on-
set/offset timestamps of sound events using audio with both
weakly labeled data and unlabeled data. It contains 10 classes
of audio events in domestic environments (e.g. Speech, Dog,
Blender, etc.) There are three different sets of training data pro-
vided: weakly labeled data, in-domain unlabeled data and out-
of-domain unlabeled data. Weakly labeled training set contains
1,578 clips with 2,244 occurrences with only utterance-level la-
bels. The in-domain unlabeled training set contains 14,412 clips
of which the distribution per class is close to the labeled set. In
addition, the unlabeled out-of-domain training set is composed
of 39,999 clips from classes not considered in this task. Note
that event-based F1 is chosen by the challenge organizer as the
evaluation metric, which is different from the segment-based F1
used in DCASE 2017 task 4B.

To utilize the unlabeled in-domain data, we use the tri-
training proposed for audio tagging tasks in [26]. The idea of
tri-training is similar to self-training, which takes advantage of
a model trained with labeled data only to assign pseudo-labels
to unlabeled data. Instead of relying on one model for pseudo-
labeling, we train three independent models. To update one of
those three models, an unlabled clip gets a pseudo-label and
is added into the training set if the other two models predict the
same label with high confidence on the clip. Generating pseudo-
labels using consensus of multiple models mitigates mistakes
made by a specific model. One caveat of tri-training is that
multiple models should differ such that the prediction of indi-
vidual models complement each other. Although the training
set is bootstrapped three times for training three models in [26],
we use the same training set while initializing models with dif-
ferent random seeds rather than bootstrapping. We find such
practice leads to better performance which might be due to the
limited amount of labeled data.

While predicting pseudo-labels of unlabeled data, we only
infer utterance-level label. Model is trained with ADAM opti-
mizer with an initial learning rate of 0.001 for 30 epochs, and
the learning rate is reduced by half every 10 epochs. We chose

Classification F1 Dev (%) Eval (%)
Xu et al. [5] (ranked 1st) 57.7 55.6

Lee et al. [11] (ranked 2nd) 57.0 52.6
Iqbal et al. [29] N/A 58.6
Wang et al. [14] 53.8 N/A

Yan et al. [6] 59.5 60.1
Ours 64.8 66.1

Table 2: Results on DCASE 2017 task 4A: audio tagging for
smart cars

Segment-based F1 Dev (%) Eval (%)
Lee et al. [11] (ranked 1st) 47.1 55.5
Xu et al. [5] (ranked 2nd) 49.7 51.8

Iqbal et al. [29] N/A 46.3
Wang et al. [14] 46.8 N/A

Yan et al. [6] 51.3 55.1
He et al. [12] 46.5 53.4

Ours 49.9 49.4
Table 3: Results on DCASE 2017 task 4B: weakly supervised
AED for smart cars

the best weights out of 30 epochs based on classification F1 on
the dev set. The batch size is set to 48 due to GPU memory
constraints. We also augment the labeled data by doing (1) cir-
cular shifting audio at a random timestep (2) randomly mixing
two audio clips. When two clips are mixed, their labels are also
merged. The number of labeled audio in augmented dataset is
increased to 3,578. Only in-domain labeled data are used for
pseudo-labeling in tri-training. For post-processing, we apply
median filtering on the output segmentation mask, and the filter
size per event is tuned based on event-based F1 on the dev set.

4. Experimental Results
4.1. Audio Tagging

Table 2 shows the classification F1 for the audio tagging subtask
in DCASE 2017 task 4 on the development set and the evalu-
ation set. While most of the previous works of joint frame-
work for audio tagging and weakly supervised AED use at-
tention mechanism (e.g. gated CNN [5], attention by capsule
routing [29], region-based attention [6], etc.), our method with-
out any attention mechanism performs the best in audio tag-
ging. The proposed method outperforms the state-of-the-art
method [6] in F1 score by 5.3% on the dev set, and 6.0% on
the eval set. Based on these results, we argue that attention
mechanism may not be necessary for audio tagging.

4.2. Weakly Supervised AED

DCASE 2017: Table 3 shows the segment-based F1 for the
weakly supervised AED subtask in DCASE 2017 task 4 on the
development set and the evaluation set. Although our method
performs well on the audio tagging subtask, it does not outper-
form state-of-the-art methods in the weakly supervised AED
subtask. We suspect that the lack of attention mechanism may
cause this performance gap in weakly supervised AED. Explor-
ing adding attention mechanism to our current model would be
our future work. We plan to explore whether it can improve the
performance on weakly supervised AED, and how it impacts
the performance on audio tagging.
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Event-based F1 Dev (%) Eval (%)
Lu et al. [17] (ranked 1st) 25.9 32.4

Liu et al. [18] (ranked 2nd) 51.6 29.9
Kong et al. [30] (ranked 3rd) 26.7 24.0

Dinkel et al. [24] 36.4 32.5
Ours 44.5 33.0

Table 4: Results on DCASE 2018 task 4: weakly supervised
AED in domestic environments

Event-based F1 Dev (%) Eval (%)
Labeled data only 34.9 25.8

+ data aug. 42.0 29.5
+ data aug. & unlabeled data 44.5 33.0

Table 5: Ablation study of data augmentation methods on
DCASE 2018 task 4

DCASE 2018: We also tested our method on DCASE 2018
task 4, and the results are shown in Table 4. Different from
the results on DCASE 2017 task 4, our method outperforms the
state-of-the-art method [24] in event-based F1 by 8.1% on the
dev set, and 0.5% on the eval set. In order to know which part
gives us the performance gain, we did an ablation study on this
task. As shown in Table 5, data augmentation (cicular shifting
and clip mixing) plays an important role, which might be due
the amount of labeled training data is limited given model archi-
tecture is relative complicated. On top of that, using tri-training
provides additional boost, which is complementary to data aug-
mentation. For tri-training, we use an ensemble of six models,
which consists of three models trained on labeled data only, and
three models trained on both labeled data and in-domain unla-
beled data. If only labeled data are used, we use an ensemble of
three models. Note that the gap between dev and eval set, which
is also observed in [24, 30, 18], might be due to the disparity of
distribution of two sets.

5. Ablation Study

5.1. Feature extractor

To investigate the performance of different feature extractors,
we experimented with different architectures to generate the
high-level feature map. Three different types have been tested:
VGG [31], ResNet [32], and DenseNet [21]. We modified each
architecture to have similar number of parameters for fair com-
parison. For VGG, the architecture is similar to the ConvNet
configuration D in [31] with only 4 blocks and 9 conv layers.
For ResNet, the architecture is similar to ResNet-18 in [32] with
less number of filters in each block (from [64, 128, 256, 512]
to [28, 56, 112, 224]). For DenseNet, the architecture is de-
scribed as DenseNet-63 in Table 1. The number of parameters
of VGG, ResNet, DenseNet are 2.33M, 2.71M, and 2.34M. Ta-
ble 6 shows the results on DCASE 2017 task 4 development set.
Note that all these results are based on ensemble of 5 models,
which is the same setup as described in Sec. 3.1. As shown
in Table 6, DenseNet outperforms VGG and ResNet on both
audio tagging (classification F1) and weakly-supervised AED
(segment-based F1). Based on these results, we chose DenseNet
as the feature extractor through our experiments.

Classification F1 (%) Segment-based F1 (%)
VGG 63.5 48.9

ResNet 62.4 48.9
DenseNet 64.8 49.9

Table 6: Ablation study of different feature extractors on
DCASE 2017 task 4 development set.

Event # clips
Evaluation F1 (%)

label + data + data aug.
aug. &unlabeled

Dog 214 13.0 17.3 20.9
Alarm/bell/ringing 205 24.4 30.2 37.5

Speech 550 42.6 44.7 44.4
Blender 134 13.4 18.7 19.1
Frying 171 42.7 45.0 41.6
Dishes 184 15.5 24.2 26.6

Running water 343 15.0 17.0 25.0
Cat 173 9.5 17.7 21.1

Vacuum cleaner 167 37.4 33.6 45.1
Electric shaver 103 44.2 46.4 48.6

Table 7: Class-wise ablation study on DCASE 2018 task 4

5.2. Class-wise performance for weakly-supervised AED

To disentangle the effects of data augmentation and using unla-
beled data, we did a further class-wise ablation study (see Ta-
ble 7). Most events benefit from the both methods. As shown
in Table 7, data augmentation helps detection of “dishes” and
“cat” sound the most. We notice those events are generally
short and are the foreground sounds in the original audio. Mix-
ing audios provides richer background noise which helps the
model disentangling the foreground sound from other sound.
The gain brought by employing unlabeled data is related to
the amount of labeled data, as we don’t see large improvement
from the “speech” event that has the largest amount of labeled
data. Additionally, it is potentially related to the difficulty of
detecting certain events. As some events are harder to detect
(e.g., alarm/bell/ringing, running water) potentially due to the
low loudness, ambiguity of definition and large variation, larger
amount of training data are required to achieve high perfor-
mance.As a consequence, those events generally benefit more
from the ways of increasing data amount including our semi-
supervised approach and data augmentation.

6. Conclusions
This paper proposes a network architecture mainly designed for
audio tagging, which can also be used for weakly supervised
AED. Different from most of the previous works on weakly
supervised AED that use recurrent layers with attention-based
mechanism to localize acoustic events, the proposed network
directly localizes events using the feature map extracted by
DenseNet without any recurrent layers. In the audio tagging
task of DCASE 2017 [2], our method significantly outperforms
the state-of-the-art method [6] by 5.3% on the dev set, and 6.0%
on the eval set in F1 score. For weakly supervised AED task in
DCASE 2018 [16], our model outperforms the state-of-the-art
method [24] by using data augmentaion and tri-training [26] to
leverage unlabled data.
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