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Abstract

Multiple instance learning (MIL) has recently been used for
weakly labelled audio tagging, where the spectrogram of an
audio signal is divided into segments to form instances in a
bag, and then the low-dimensional features of these segments
are pooled for tagging. The choice of a pooling scheme is the
key to exploiting the weakly labelled data. However, the tradi-
tional pooling schemes are usually fixed and unable to distin-
guish the contributions, making it difficult to adapt to the char-
acteristics of the sound events. In this paper, a novel pooling
algorithm is proposed for MIL, named gated multi-head atten-
tion pooling (GMAP), which is able to attend to the informa-
tion of events from different heads at different positions. Each
head allows the model to learn information from different repre-
sentation subspaces. Furthermore, in order to avoid the redun-
dancy of multi-head information, a gating mechanism is used to
fuse individual head features. The proposed GMAP increases
the modeling power of the single-head attention with no com-
putational overhead. Experiments are carried out on Audioset,
which is a large-scale weakly labelled dataset, and show supe-
rior results to the non-adaptive pooling and the vanilla attention
pooling schemes.

Index Terms: audio tagging, weakly labelled data, multiple in-
stance learning, pooling scheme, multi-head attention.

1. Introduction

Audio tagging (AT) refers to the task of assigning labels of one
or several sound classes to an audio recording. Potential ap-
plications of audio tagging include sound event detection [1],
audio retrieval [2] and audio surveillance [3, 4]. There is an
increasing interest in audio tagging research, including the col-
lection of training data covering a large number of event classes,
and development of learning algorithms for classification. In or-
der to scale up the training data, Google released Audioset [5],
which is a large-scale weakly labelled dataset with annotations
only for the classes of audio events, but not for their onset/offset
times. Designing learning algorithms for multi-label audio clas-
sification from weakly labelled data is a new challenge in audio
tagging.

A popular framework for audio tagging with weakly la-
belled data is multiple instance learning (MIL) [6, 7, 8], where
the time frames in an audio recording are treated as instances
in a bag, and only the labels of the bag are given. A bag is
considered as a positive bag if it contains at least one positive
instance, otherwise negative. For a given MIL framework, there
are two main MIL strategies: (i) instance-level approach (ii)
embedding-level approach. The difference is that the former
works by pooling the instance scores to obtain the bag scores,
while the latter integrates the embedding-level features into bag
representation and then directly carry out bag classifier. In [9], it
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was indirectly shown that the embedding-level approach is more
efficient than the instance-level approach. Therefore, in this
paper, we take the embedding-level approach, parameterizing
through the multiple instance neural network (MINN), which
contains three modules: (i) feature extraction to provide low-
dimensional embedding, (ii) MIL pooling, and (iii) bag classi-
fier.

The crucial module in exploiting the weakly labelled data
lies in the use of an effective MIL pooling scheme to ag-
gregate the instance-level embedding into bag-level features
[10, 11]. The default choice is max or average pooling. Al-
though these pooling functions achieve promising results, they
are pre-defined, and less flexible for adapting to practical ap-
plications. In recent studies, efforts have been made to learn
the adaptive pooling function and weights. For example, Kong
et al. [12] proposed an attention model as a pooling function,
which is achieved by a weighted sum of the results over frames.
He et al. [13] proposed a hierarchical attention pooling struc-
ture. By assigning larger weights to the instance corresponding
to the sound events, these methods could dynamically deter-
mine the contribution of each instance.

Inspired by these works, in this paper, we propose a new
MIL pooling function, namely, gated multi-head attention pool-
ing (GMAP), where we extend the vanilla attention pooling to a
multi-head attention pooling function. In the proposed scheme,
the encoded representations of the sequence are split into ho-
mogeneous sub-vectors, called heads. Features specific to dif-
ferent events from various heads are then aggregated, as the
bag-level representation of the entire recording. Therefore, our
proposed scheme can capture the sequence information from
different subspaces at different positions. Since the information
from multi-heads might be overlapping, a gate mechanism is
used to fuse the information from various heads and remove the
potential redundancies. Finally, the bag-level features obtained
through GMAP are fed into the classifier to identify the events.
We evaluated the proposed GMAP on Audioset. Experiments
show that the proposed GMAP is superior to the non-adaptive
pooling scheme and the vanilla attention pooling scheme. While
this paper focuses on audio tagging, the proposed method could
be applied to similar problems in other applications.

The paper is organized as follows. The multiple instance
neural network and pooling schemes are described in Section
2. Next, the proposed pooling method is presented in Section
3, followed by the experimental setup and results in Section 4.
Finally, we conclude the paper in Section 5.

2. Multiple Instance Learning

In this section, we present the MIL with neural networks, and
discuss the existing pooling methods used and their limitations.

http://dx.doi.org/10.21437/Interspeech.2020-1197



. MIL supervision
: Pooling O O
: Bag Bag
I probability label
Bag of ) Classifier
instances M /
Neural network MIL pooling I [nstance embedding

[n Bag embedding

Figure 1: Architecture of the multiple instance neural network.

2.1. Multiple Instance Neural Network (MINN)

While MIL can be applied to a variety of conventional learning
algorithms (e.g., support vector machines and nearest neighbor
classifiers), it has been used recently with deep learning frame-
work including convolutional neural networks (CNN), offering
state-of-the-art performance for weakly labelled audio tagging
[14, 15, 16].

For an audio recording, the log-mel spectrogram can be ex-
tracted and denoted as the ¢-th bag X;. The instances in this
bag can be denoted as {x;}7"*,, where z; is the j-th frame (or
segment) in the bag X;, and m; is the number of instances in
X;. For the embedding-level approach, a neural network fy(+)
is used to transform the instances x;; into a low-dimensional
embedding (i.e. feature) e;;. Then, the MIL pooling P(-) is
applied on the feature embedding e;; to generate a bag-level
embedding ;. After that, a bag-level classifier fs(-) is applied
to estimate the probability 6 of the audio events being present
in the recording. The overview of MINN is illustrated in Figure
1. It can be summarized as:

eij = fu (i)
u; = P (ei;)
0= fo (us)

ey

2.2. MIL Pooling

In the above process, the design of the MIL pooling layer is
an essential issue in weakly labelled audio tagging. The max,
average and attention pooling schemes are the most well-known
and widely used ones [12, 17, 18]. Those pooling functions are
introduced as follows.

Max pooling: The max pooling scheme simply inherits the
largest activation of the instances in the bag. It can be described
as follows:

u; = m]ax €ij = m]ax fo (zij) 2)

One limitation of max pooling is that only one instance in
a recording can receive error signals, making optimization dif-
ficult and unstable. If a segment is selected as the key instance,
any other events that do not appear in the segment are easily
ignored.

Average pooling: In the average pooling scheme, the con-
tribution of each instance is assumed to be the same, and equal
weights are assigned to the instances. Under this assumption,
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the bag-level representation can be obtained by:
W= D e = . > fu (i)
ma| < ma| <

Because all the instances in a positive bag are considered
positive, the average pooling performs well when the events are
long relative to the bag. However, this assumption may not hold
in practice for relative short events, e.g., gunshot, and will pro-
duce a large number of false positives in the prediction stage
[11].

Attention Pooling: In the attention pooling, each instance
does not necessarily contribute equally to the bag-level repre-
sentation. Instead, the bag can be aggregated based on the im-
portance of each instance, as shown below:

2w (@) fy ()
Y w(Ey)

where w(-) is an attention function for calculating the weights
of the instances.

With this attention mechanism, the bag representation usu-
ally focuses on a particular component of the spectrogram, of-
ten the part relevant to an event. However, there can be multi-
ple events in an audio recording, especially for a long-duration
recording. In addition, with this pooling scheme, all the atten-
tion information comes from the same low-dimension represen-
tation. Nevertheless, looking at the representations from dif-
ferent subspaces, there will be different but concurrent events.
Due to these issues, the detection of events that occur in the
recording can be incomplete.

3

“

3. Gated Multi-head Attention Pooling

In view of the limitations of the pooling schemes discussed
above, we propose a gated multi-head attention pooling func-
tion. First, a single-head attention method is introduced, then it
is extended to multi-head attention scheme in order to attend to
different parts of the audio signal.

3.1. Single-head Attention Pooling

As we know, different segments would make different contri-
butions to the recording-level features. We firstly implement
single-head attention to measure the importance of instances,
which is illustrated in Figure 2 (a). Suppose the segment-level
embedding is H = [h1, h2,...,hn]" and H € RV*?, the



attention score wy of each feature hy € R® is parameterized
with a dedicated layer and softmax function (called the atten-
tion model), which is computed as:

T
exp (v” hy
wt = # (5)
> exp (vThy)
where v € R? is a trainable parameter and N is the number of

segments.
After obtaining the weights over all the segments, the
weighted mean vector g is calculated by pooling segments with

a weighted sum:
N
=Y ih
t=1

In addition, the higher-order statistics (e.g., the standard
deviation) [19] plays an important role since it contains event
characteristics related to temporal variability over long contexts.
Hence, the weighted standard deviation &, defined as follows,
will be added as a part of recording-level features:

(©)

N
o= Zwtthht—ﬁ@ﬁ

t=1

(M

where ® denotes element-wise multiplication and and square
root is element-wise operation.

Finally, we concatenate the weighted mean and standard de-
viation to obtain the recording-level pooling features ¢ € R2%:

c=[p, o] ®)

3.2. Gated Multi-head Attention Pooling

The gated multi-head attention pooling function is proposed to
detect the event-related segments more precisely. Each head
corresponds to a position of the encoded representation, and the
weight in the head characterizes the presence of the events in
that position.

As shown in Figure 2 (b), the segment level embedding h.
is firstly split to k sub-vectors by = [h1, o, . . ., hek], where
hi € RY*, and the vector in the same position forms a j-th
subspace: S; = [h1j, haj, ..., hr;]". Secondly, the single-
head attention pooling is performed in parallel to compute the
weights for these subspaces, and to output a mixed represen-
tation. In particular, different attention is applied to different
heads, and the attention weight of the head j at the step ¢ is
calculated as:

B exp ('UjThtj)
Ly exp (v] hj)

where v; € R¥* is a trainable parameter. After that, each head
of the weighted mean /i; and standard deviation & ; is computed
as:

®

Wtj

Il
NE

B wejhe;

-
Il

1

(10)

oj

N
= Zwtjhtj Ohy — 1 © iy
t=1
¢j = [y, 0]
where ¢; € R2?/* s the attentive pooling feature of the j-th
subspace.
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At this point, we focus on how to aggregate information
among multiple positions. The purpose of information aggre-
gation is to combine the partial representation captured by dif-
ferent attention heads into the final representation. As the infor-
mation represented by these heads may be redundant, a gated
mechanism is presented to remove redundancy, where the gated
value is close to O if the information is redundant, otherwise it is
close to 1 if information should be attended. Specifically, all the
vectors produced by parallel heads are concatenated together to
form a single vector Cconcat = [C1,C2, . .., Ck]. Then, a gated
unit similar to GLU [20] is followed to capturing dependencies
among heads:

u = g(W(cconcat) + b) © Cconcat (11)

where w is the final bag-level representation, g denotes the Sig-
moid function, and W and b are trainable weights and bias pa-
rameters.
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N
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(a) Single-head attention pooling.
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(b) Gated multi-head attention pooling.

Figure 2: The illustration of single-head and multi-head atten-
tion pooling structure.

4. Experiments
4.1. Database

We conduct experiments with Audioset [5], which consists of
527 categories of sound events and a collection of over 2 million
10-second excerpts of YouTube videos. Each audio clip may
contain multiple labels. The dataset only provides labels at clip
level (i.e. without time stamps for the events in frame levels,
hence they are weak labels). There are three metrics used for



Table 1: Classification results with different pooling schemes.

Model mAP mAUC  d-prime
Max pooling 0.396  0.969 2.640
Average pooling 0.394  0.966 2.573
Max + average pooling 0.397  0.970 2.654
Vanilla attention pooling 0.404  0.969 2.631
Single-head attention pooling  0.406  0.970 2.652
GMAP 0417 0971 2.678

evaluation: mean average precision (mAP), mean area under
the curve (mAUC), and d-prime. The higher the value of these
metrics, the better the performance of the tagging method.

4.2. Features

On the basis of the frames, the audio signal is encoded by a
Fourier transform based filter bank with 64 coefficients. A se-
quence of the T-frame spectrograms is stacked and the shape of
each spectrogram is 400 (frames). Finally, the normalized spec-
trogram is used as the input of networks. It is also worth men-
tioning that AudioSet is an imbalanced dataset, and some sound
classes (e.g. gunshot) have fewer training samples as compared
with others. In our experiments, Mixup [21] and SpecAugment
[22] are used to increase the number of small samples.

4.3. Model

To set up experiments, we implement CNN system as our base-
line. The CNN with MIL has three components, the convolu-
tional layers, the MIL pooling, and the classifier to produce pre-
dictions for recording-level probabilities of sound events. The
convolutional layers consist of four convolutional blocks. Each
block is composed of two 3x3 convolution layers followed by
an average pooling layer. In addition, batch normalization and
ReL.U function are applied to all convolutional layers. The MIL
pooling scheme is then used to transform the extracted repre-
sentation into an overall recording-level feature. Finally, the
aggregated feature is fed into two fully connected (FC) layers
and a sigmoid layer to output the probabilities of sound events
presented in the signal.

We build models trained with different MIL pooling func-
tions, including non-adaptive pooling schemes (max, average
and max + average similar to [23]), the single-head attention
pooling and proposed GMAP scheme. GMAP refers to the best
multi-head attention model that we have trained and the num-
ber of heads is chosen at 4. All models are implemented based
on the same backbone network, and only the MIL pooling is
changed.

4.4. Experimental results

Table 1 shows the results with different MIL pooling schemes.
First of all, we can see that max pooling is slightly better than
average pooling scheme in our experiment. Second, the per-
formance improvement achieved by combining these two is
marginal. In our proposed methods, single-head attention with
standard deviation is more effective than the vanilla attention
pooling, and GMAP further enhances the result by measuring
the importance of instances at different positions. Figure 3
shows the weight values obtained by GMAP and the vanilla
attention pooling in an audio recording. Comparing different
heads with their weights, it can be found that the model is able to
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Table 2: Comparison with various models in the literature.

Model mAP mAUC d-prime

Benchmark (2017) ][5]  0.314  0.959 2.452
Xu et al. (2018) [7] 0.360  0.970 2.660
Kong et al. (2019) [8]  0.369  0.969 2.640
Logan et al. (2019) [16] 0.392  0.971 2.682
Kong et al. (2020) [23] 0.439  0.973 2.720
GMAP 0417 0971 2.678

e

(b)

Head4 —— Vanilla Attention

Figure 3: (a) The spectrogram of an audio recording. (b) The
trajectory of the attention weights extracted from GMAP and
vanilla attention pooling over the above recording.

capture sound events from different subspaces. In addition, the
vanilla attention weight is evenly distributed in the sequence,
while GMAP focuses on a position and detects events at that
position.

Table 2 compares the proposed system with the state-of-the-
art in the literature. Compared with other methods, the perfor-
mance of our system is also competitive. The proposed system
outperforms most methods except the recent results [23]. Note
that [23] utilized the waveform and the log-mel spectrogram as
inputs to CNNs, which significantly improved its performance.
By contrast, our system achieves comparable performance with-
out using a variety of features.

5. Conclusions

We have presented a gated multi-head attention pooling func-
tion (GMAP) for weakly labelled audio tagging. The proposed
GMAP aims to detect event-related segments more precisely by
assigning weights to different positions. Specifically, each head
calculates the weighted mean and standard deviation to produce
representations of the position. Then a gate function is used to
fuse the information of subspaces to avoid redundancy. Em-
pirical results show that the proposed method outperforms non-
adaptive pooling schemes and achieves comparable results with
the current state-of-the-art methods. In the future, we plan to in-
vestigate the effectiveness of the proposed methods for other re-
lated applications, such as speaker verification and speech emo-
tion recognition.

6. Acknowledgements

Science &
(No:

This paper is supported by Shenzhen
Technology  Fundamental = Research  Programs
JCYJ20170817160058246 & JCYJ20180507182908274).



[1]

[2]

[3]

[4

=

[5

[ty

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

7. References

G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neu-
ral networks for polyphonic sound event detection in real life
recordings,” in 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 1EEE, 2016, pp.
6440-6444.

L. Barrington, A. Chan, D. Turnbull, and G. Lanckriet, “Audio in-
formation retrieval using semantic similarity,” in 2007 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing-
ICASSP’07, vol. 2. 1IEEE, 2007, pp. II-725.

A. Mesaros, T. Heittola, and T. Virtanen, “Tut database for acous-
tic scene classification and sound event detection,” in 2016 24th
European Signal Processing Conference (EUSIPCO). IEEE,
2016, pp. 1128-1132.

S. Dimitrov, J. Britz, B. Brandherm, and J. Frey, “Analyzing
sounds of home environment for device recognition,” in European
Conference on Ambient Intelligence. Springer, 2014, pp. 1-16.

J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology
and human-labeled dataset for audio events,” in 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2017, pp. 776-780.

S. Tseng, J. Li, Y. Wang, J. Szurley, F. Metze, and S. Das, “Mul-
tiple instance deep learning for weakly supervised small-footprint
audio event detection,” in Interspeech, 2017, pp. 3279-3283.

C. Yu, K. S. Barsim, Q. Kong, and B. Yang, “Multi-level attention
model for weakly supervised audio classification,” in Workshop
on Detection and Classification of Acoustic Scenes and Events,
2018.

Q. Kong, C. Yu, T. Igbal, Y. Xu, W. Wang, and M. D. Plumb-
ley, “Weakly labelled audioset tagging with attention neural net-
works,” in IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 27, 2019, pp. 1791-1802.

X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple
instance neural networks,” Pattern Recognition, vol. 74, pp. 15—
24,2018.

B. McFee, J. Salamon, and J. P. Bello, “Adaptive pooling opera-
tors for weakly labeled sound event detection,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 26,
no. 11, pp. 2180-2193, 2018.

Y. Wang, J. Li, and F. Metze, “A comparison of five multiple in-
stance learning pooling functions for sound event detection with
weak labeling,” in ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 31-35.

Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “Audio set clas-
sification with attention model: A probabilistic perspective,” in
2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2018, pp. 316-320.

K. X. He, Y. H. Shen, and W. Q. Zhang, “Hierarchical pool-
ing structure for weakly labeled sound event detection,” arXiv
preprint arXiv:1903.11791, 2019.

Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-scale
weakly supervised audio classification using gated convolutional
neural network,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2018,
pp- 121-125.

R. Shi, R. W. Ng, and P. Swietojanski, “Teacher-student train-
ing for acoustic event detection using audioset,” in I[CASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2019, pp. 875-879.

L. Ford, H. Tang, F. Grondin, and J. Glass, “A deep residual net-
work for large-scale acoustic scene analysis,” Proc. Interspeech
2019, pp. 2568-2572, 2019.

J. Amores, “Multiple instance classification: Review, taxonomy
and comparative study,” Artificial intelligence, vol. 201, pp. 81—
105, 2013.

820

[18]

[19]

[20]

[21]

[22]

[23]

M. Ilse, J. M. Tomczak, and M. Welling, “Attention-based deep
multiple instance learning,” arXiv preprint arXiv:1802.04712,
2018.

K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statis-
tics pooling for deep speaker embedding,” arXiv preprint
arXiv:1803.10963, 2018.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in Proceedings of
the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 2017, pp. 933-941.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-

tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

Q. Kong, Y. Cao, T. Igbal, Y. Wang, W. Wang, and M. D. Plumb-
ley, “Panns: Large-scale pretrained audio neural networks for au-
dio pattern recognition,” arXiv preprint arXiv:1912.10211, 2019.



