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Abstract
This paper proposes a novel approach to embed speaker in-
formation to feature vectors at frame level using an attention
mechanism, and its application to one-shot voice conversion.
A one-shot voice conversion system is a type of voice conver-
sion system where only one utterance from a target speaker is
available for conversion. In many one-shot voice conversion
systems, a speaker encoder mechanism compresses an utter-
ance of the target speaker into a fixed-size vector for propagat-
ing speaker information. However, the obtained representation
has lost temporal information related to speaker identities and
it could degrade conversion quality. To alleviate this problem,
we propose a novel way to embed speaker information using
an attention mechanism. Instead of compressing into a fixed-
size vector, our proposed speaker encoder outputs a sequence
of speaker embedding vectors. The obtained sequence is selec-
tively combined with input frames of a source speaker by an
attention mechanism. Finally the obtained time varying speaker
information is utilized for a decoder to generate the converted
features. Objective evaluation showed that our method reduced
the averaged mel-cepstrum distortion to 5.23 dB from 5.34 dB
compared with the baseline system. The subjective preference
test showed that our proposed system outperformed the baseline
one.
Index Terms: Voice conversion, attention mechanism, speaker
embedding, soft DTW, U-Net

1. Introduction
Voice conversion are techniques to modify speech signals of a
source speaker to ones of a target speaker so that they sound
like utterances from the target speaker. Voice conversion has
a wide range of applications, such as utilization for entertain-
ment [1], assistance of live performance [2], supports for dis-
abilities [3], etc. Voice conversion has long histories of re-
search. An interesting research direction is adopting data-driven
approaches [4, 5, 6], in which voice conversion is treated as a
machine learning problem. When adopting this approach, one
of the major issues is how to collect the data which is suitable
for the problem. In order to treat voice conversion as a regres-
sion problem, utilizing parallel corpora [4, 5, 6] has been widely
investigated. On the other side, methods utilizing nonparallel
data [7, 8, 9, 10] which treat voice conversion as a kind of re-
construction problems, have been also explored.

The function of voice conversion is divided into two func-
tions; to ensure the consistency of the linguistic content between
both the source and target speakers, and to model the speaker
individuality of the target [11]. Achieving the second function
of voice conversion by a small amount of nonparallel data is a
challenging task, and in the case that required speech data is as
small as one utterance of the target speaker, a reference utter-
ance henceforth, it is called one-shot voice conversion. Stud-

ies for one-shot voice conversion adopt a wide variety of ap-
proaches especially to guarantee the first function, not only the
second function; including pretraining and adaptation [12, 13],
combination with automatic speech recognition [14, 15, 16],
and content and speaker information disentanglement [17, 18],
and so on. Among the various kinds of approaches for one-
shot voice conversion, approaches based on an encoder-decoder
framework [17, 18] are powerful and reasonable ways to real-
ize one-shot voice conversion. For one-shot voice conversion,
encoder-decoder models which possess two specific types of en-
coders; a content encoder and a speaker encoder, are adopted.
The content encoder and the speaker encoder extract a content
representation from a source utterance and a speaker represen-
tation from a reference utterance, respectively. Both the repre-
sentations are fed into a decoder to construct a utterance for the
target. That is to say, the two encoders are reasonable imple-
mentations of the required functions for the voice conversion.

In many voice conversion systems, it is assumed that
the linguistic content is dynamic and time-varying while the
speaker information is static and time-independent. Therefore
the speaker representation is often modeled as a fixed-size vec-
tor. This would be a reasonable modeling strategy. However,
fixed-size representation of the speaker by an utterance have
two issues to be considered. First, since speech signals dynam-
ically change in time, some parts of speaker information also
would change in time. Considered the differences of mecha-
nisms of speech production, vowels and consonants would con-
vey different aspects of speaker information. From a viewpoint
of applications, silence parts of the signals, which hardly con-
vey speaker information, should be treated differently. Second,
using a fixed-size vector as speaker representation causes a loss
of information, and rich speaker information in speech would
lossily compressed into a predefined capacity.

With consideration for these issues, we propose to use
time-varying speaker representation for one-shot voice conver-
sion. For extraction of the time-varying speaker information,
the functions of content and speaker extractors should interlock
each other. To achieve the concept, we adopt an attention mech-
anism for implementing time varying speaker representation,
since a relation between a reference utterance and a goal of the
output can be treated as a family of sequence to sequence pro-
cessing. Intuitionally, this process can be interpreted as fetching
speaker information from a dictionary, which is extracted from
a reference utterance, depending on content. To capture an hi-
erarchical aspects of speech, we also adopt a multi resolutional
architecture similar to UNet [19].

In addition, to obtain content and speaker representation
suitable for one-shot voice conversion, we design a training pro-
cedure so that the gap between training and test phases is suffi-
ciently small. For consistent performances for conversion in the
test phase, source utterances in the training phase are converted
in the same way as the test phase, and converted results are com-
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Figure 1: Overview of our conversion model and its training
procedure. The model takes two input, which are labeled source
and reference. Then each input is fed into the encoder. Among
output of the encoders, content code is directly fed into decoder.
The rest, which are query, key and value are used for calculat-
ing time varying speaker code. Finally the codes are fed into
decoder, then compared with Target, which shares speaker with
reference and linguistic content with source.

pared with the ground truth of the target. Note that this requires
parallel data between a sufficiently large number of combina-
tions of speaker pairs. However, no condition is required as to
a reference utterance during the test phase. That is to say it is a
method of a nonparallel approach. From another point of view,
the proposed approach can be regarded as efficient utilization of
the prestored parallel data. Figure 1 illustrates our method.

The rest of the paper is organized as follows. Section 2
describes an attention mechanism which is a key technique for
the proposed approach. Section 3 and Section 4 describe the
overview and the detailed implementation of the proposed ap-
proach, respectively. Section 5 shows the experimental evalua-
tions and Section 6 concludes the paper.

2. Attention Mechanism
An attention mechanism [20] is a commonly-used module to
model sequence to sequence processing such as machine trans-
lation. Let query q = {q(t)}Tt=1, key k = {k(t′)}T

′

t′=1

and value v = {v(t′)}T
′

t′=1 be vector sequences, where T
and T ′ are their sequence lengths. The attention function
Attention(q, k, v) and its output sequence s = {s(t)}Tt=1 is
defined as follows,

s =Attention(q,k,v), (1)

s(t) =V softmax(K̂⊤q̂(t))

=

∑T ′

t′=1 exp(αq̂(t)
⊤k̂(t′))v(t′)∑T ′

t′=1 exp(αq̂(t)
⊤k̂(t′))

, (2)

q̂(t) =q(t)/∥q(t)∥2, (3)

k̂(t′) =k(t′)/∥k(t′)∥2, (4)

where K̂ and V are matrices whose t′-th column is k̂(t′) and
v(t′) respectively, and α is a hyper parameter. Note that a
slightly modified version of dot product attention, in which
query and key are first normalized then rescaled with α is
adopted. Intuitionally, this process can be interpreted as fetch-
ing time-varying global information between source and refer-
ence sequences via softmax(K̂⊤q̂(t)), when q comes from the
source and k,v come from the reference.

3. Proposed Approach and Method
3.1. Formulation of one-shot voice conversion

Let x = {x(t)}Tx
t=1 be a sequence of input features, r =

{r(t)}Tr
t=1 be a sequence of reference features, and x̂ =

{x̂(t)}T̂x
t=1 be a sequence of converted features. In the follow-

ing notation, bold alphabet indicates a sequence of vectors and
(t) indicates the time index unless specified. Relation between
those sequences are defined as follows:

x̂ =f(x, r; θ), (5)

where f is a conversion function parametrized by θ. Parameter
optimization under a given dataset X can be described as:

minimize
θ

∑
x,r,y∈X

L (y, f(x, r; θ)), (6)

where L(y, x̂) is a loss function which measures closeness be-
tween y and x̂. This process is performed by stochastic gradient
descent or its variant such as Adam [21].

3.2. Loss functions for parallel and nonparallel settings

There are two kinds of implementations for the loss function
L(y, x̂), depending on properties of the prepared training data,
i.e., parallel or nonparallel settings.

For parallel training data, approaches based on dynamic
time warping (DTW) is commonly used [5, 6]. While the ob-
tained alignment is fixed in the conventional approaches, one
drawback of them is the mismatch of alignment cannot be re-
covered during the training phase. To alleviate this, we adopt
the soft DTW loss function proposed in [22], which can align
output and ground truth rather than input and ground truth as in
traditional DTW-based approaches. On the other hand, for non-
parallel training data, the design of loss function can be straight
forward, e.g., it can be frame-wise mean squared error [18, 17].
In this case y is equal to x and the r is from the same speaker
as x. Finally, the loss function L(y, x̂) is defined as:

L(y, x̂) =

{
λMSELMSE(y, x̂) (y = x)

λDTWLDTW(y, x̂; γ) (otherwise)
(7)

LMSE(y, x̂) =
1

MT

T∑
t=1

∥y(t)− x̂(t)∥22

LDTW(y, x̂; γ) =
1

MT
dtwγ(y, x̂),

where λMSE and λDTW are hyper parameters for balancing
weights, M = dim x̂(t), T is the length of sequence x̂.

3.3. Model architecture

3.3.1. Multi-scale autoencoder

Speech features appear in various time resolutions, which moti-
vates us to use multi resolution architecture such as UNet [19].
Specifically, we adopt multi-scale encoders Ec(x) and Es(r)
for content and speaker information, respectively, and a multi-
scale decoder D to model f . Parameters are omitted for sim-
plicity. These encoders and decoder are related with following
equations

w(1), · · · ,w(L) = Ec(x) (8)

z(1), · · · ,z(L) = Es(r) (9)

x̂ = D({w(l)}Ll=1, {z(l)}Ll=1), (10)

807



where {w(l)}Ll=1 and {z(l)}Ll=1 are multi-scale features ex-
tracted from x and r, respectively.

3.3.2. Attention-based speaker embeddings

In one-shot voice conversion, speaker information is obtained
from only one reference utterance. Therefore information
bandwidth between the reference and output should be broad
enough. To design this information path, we assume that
speaker information is appeared in a content-dependent way,
i.e., there are several clusters of information such as specific
vowel-dependent information, specific consonant-dependent in-
formation, etc. Under this assumption, speaker information
should also be conducted in a content-dependent way. For ex-
ample, when synthesizing vowel, the vowel region in the refer-
ence should be regarded as more important one than the other
regions such as consonant or silence parts.

Information transfer process mentioned above can be effec-
tively modeled using an attention mechanism [20], as softmax
mapping used in the attention mechanism can be interpreted
as content-dependent fetching of information. Specifically, the
above mentioned process is performed in our decoder in the fol-
lowing way:

c(l), q(l) =split(w(l)), (11)

k(l),v(l) =split(z(l)) (12)

s(l) =Attention(q(l),k(l),v(l)) (13)

x̂ =D̂(c(1), · · · , c(L), s(1), · · · , s(L)), (14)

where α is a hyper parameter, l = (1, . . . , L), and T (l)

and T ′(l) are the lengths of sequence w(l) and z(l), respec-
tively. Intuitively, the decoder tries to reconstruct a sequence of
acoustic features x̂ using content information c(l) and content-
dependent speaker information s(l).

4. Details of Implementation
4.1. Acoustic feature

We used 41-dimensional mel-cepstral coefficients (MCEPs)
extracted from spectral envelopes obtained using WORLD
vocoder [23, 24] along with fundamental frequency contours
(F0s) and aperiodicities (APs) for acoustic features. We used
16kHz-sampled audio data, The length of short time FFT is
1024 points and 5 ms hop length. MCEPs except the 0-th co-
efficient were fed into neural network and converted. F0s are
converted with conventional linear regression in logF0 domain.
The other features were unchanged and directly used for param-
eter generation.

4.2. The detail of the neural networks

We adopted UNet-like skip connections for encoders and de-
coder. Each block was also constructed with a short skip con-
nection. Over all architecture can be found in Figure 2.

The input x and r were processed similarly; the sampling
rate was halved L − 1 times, then sampling rate was doubled
L − 1 times, to output w(l) and z(l) (l = 1, · · · , L, coarse to
fine order) for each sampling rate. Then the encoder’s output
w(l) and z(l) were gradually fed into decoder to calculate x̂.

Ec, Es and D were constructed with fully convolutional
neural networks. Weight normalization [25] was applied for
each convolution kernel. Reflection padding was applied be-
fore each convolution to maintain sequence length. We adopted
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Figure 2: Neural net architecture. Conv{k} indicates 1D con-
volution with kernel size k. Each convolution layer is followed
by GELU activation unless denoted with ⋆. Blocks filled with
gray are not appeared in the shallowest end of repetitions. Note
that there are two encoders with identical structure.

GELU [26] for nonlinear activation function. To modify reso-
lutions, down sampling was implemented with average pooling
with stride and kernel size 2. Up sampling was implemented
with nearest neighbor interpolation.

Hyper parameter settings were as follows: the number of
hidden unit for each layers is 96, α = 5, L = 5, dim q(l)(t) =

dimk(l)(t) = 16, dimw(l)(t) = dim z(l)(t) = 16+2L−l+1.

4.3. Training

We found that keeping distribution of c close to Gaussian distri-
bution helps stabilizing training and generalization. Therefore
we added a regularization term to the objective function to meet
the above condition.

LKL =
1

L

L∑
l=1

L(l)
KL

d(l)
(15)

L(l)
KL =KLD(N (µ(l)

c ,Σ(l)
c ) ∥ N (0, I)) (16)

where d(l) = dim c(l)(t), µ
(l)
c and Σ

(l)
c are sample mean

and variance of c(l), respectively. The modified loss function
L̂(y, x̂) becomes

L̂(y, x̂) = L(y, x̂) + λKLLKL, (17)

where λKL is a scalar hyper parameter.
The number of parallel and nonparallel samples in batch

were fixed during training, which were 16 and 32, respec-
tively. We trained our model using Adam [21] with learn-
ing rate 10−4 and applied weight decay [27] with rate
10−4. During training, λDTW, λMSE and λKL were 10,
1, and 0.1, respectively. Further details may be found at
https://github.com/ishihara1989/ABSE.

5. Experiments
5.1. Dataset and experimental settings

We used JVS corpus [28] for evaluations. JVS dataset contains
100 Japanese parallel sentences read by 100 professional speak-
ers. JVS also contains 30 nonparallel sentences, which are not
shared between arbitrary speaker pairs. We used the first 90
speakers and the first 90 parallel sentences for training and the
last 10 speakers and the last 10 sentences for evaluation. For
each speaker, the longest sentence in 30 nonparallel sentences
was used for a reference utterance during evaluation.
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Table 1: Mel cepstral distortions and corresponding model
sizes. Smaller MCD indicates better conversion quality.

MCD(dB) #params
Baseline 5.81 4.2M
Baseline +para 5.34 4.2M
Proposed -attention 5.28 2.0M
Proposed 5.23 920k

Table 2: Preference score in speaker similarity and speech qual-
ity. Winner in speaker similarity and quality with statistical sig-
nificance ( p < 0.05 ) denoted with † and ‡, respectively. a)
Baseline b) Baseline+para c) Proposed-attention d) Proposed.

Similarity Quality
a) vs b)† ‡ 37.5± 6.8% 14.8± 4.9%
a) vs c)† ‡ 35.0± 6.7% 16.0± 5.2%
a) vs d)† ‡ 35.6± 6.3% 9.5± 4.1%
b) ‡ vs c) 50.0± 7.1% 62.1± 7.0%
b) vs d) 46.0± 7.0% 53.5± 7.1%
c) vs d)‡ 50.2± 7.1% 32.5± 6.6%

5.2. Objective evaluation

VAE [29] based on adaptive instance normalization was used
as a baseline system [30, 18]. Mel cepstrum were adopted
for acoustic features instead of log mel spectrogram originally
used. Since it shares component structure with our system, we
could evaluate the effectiveness of each component. In addition,
two extra reference systems are constructed as follows. In Base-
line+para, a reconstruction term in the baseline’s loss function
was replaced with our MSE- and DTW-based one. We used the
original KL divergence term instead of our LKL and gave it 0.01
weight. In Proposed-attention, our proposed speaker encoder
was replaced with a speaker encoder which outputs fixed length
speaker code. The speaker code is copied to all frames and fed
into the decoder. The speaker encoder network was hand-tuned
with test set to produce best objective score.

We used Mel cepstral distortions (MCD) for the objec-
tive meature [31]. The averaged MCD before conversion was
7.87 dB. Results are shown in Table 1. As it shows, Base-
line+para setting greatly reduced MCD compared to Baseline
which is only trained with nonparallel loss. This difference sup-
posed to have come from that our training scheme was closer
to test setting compared with Baseline. Comparing Proposed-
attention with Baseline+para, as the difference between two
methods is only in model architectures, suggesting our UNet
based architecture effectively modeled speech dynamics, which
reflected to reduction of distortion. This result showed that
multi resolution finite receptive field network could be com-
patible with single resolution infinite receptive field network.
Comparing Proposed-attention with Proposed, It suggests our
time varying speaker embedding further helped reducing recon-
struction error.

5.3. Subjective evaluation

We evaluated speaker similarity and sound quality with listen-
ing evaluation. Participants collected via crowd sourcing evalu-
ated randomly assigned 10 sentence pairs converted with differ-
ent methods. 5 of the sentence pairs were identical with the rest
except for the order of stimuli that presented to the participants,
to eliminate possibility of evaluation biases caused by order-
ing. As to speaker similarity evaluation, participants were pre-
sented a reference utterance before comparing two utterances
converted with methods. 20 people participated for each pair of

sil sh

i g a i s e N w a

input

sil

y
u
b
i

o

ts
U
k

a
cl
t
e

sh

re
fe

re
nc

e

Figure 3: Example softmax output (l = 4) in test set. red ellipse)
Attention corresponding /a/ and /o/. yellow ellipse) Attention
corresponding /i/, /e/ and /y/.

compared methods, therefore 200 utterances were evaluated for
each evaluation.

The results are shown in Table 2. All methods using paral-
lel objective was preferred to baseline in terms of both speaker
similarity and sound quality, which was consistent with objec-
tive evaluation. As to speaker similarity there were no statisti-
cally significant difference between the other pairs. As to sound
quality, Proposed-attention were less preferred to Baseline+para
or Proposed. We hypothesized that this was because speaker
encoder failed to embed multi resolution information into fixed
sized speaker code and introduced some audible artifacts. Base-
line+para, which use larger model size and infinite receptive
field was compatible with our smaller and finite receptive field
network in terms of both speaker similarity and sound quality.
Therefore we concluded that our method can be useful for real-
time conversion system without performance degradation.

5.4. Visualization of attention map

Since our model adopts an attention mechanism, visualizing at-
tention weights can give meaningful insight. Figure 3 shows an
example of attention map on test input and reference pair. It
suggests that the attention map tends to make phoneme cluster,
i.e., a input phoneme that belongs to a phoneme group attends to
the same phoneme group appeared in reference. For example,
/a/ and /o/ attends to each other, /i/, /e/ and /y/ do the same, etc.
As far as we observed, these tendencies were observed at most
source-target pairs, which suggests that our network learned
speaker independent content representation without phoneme.

6. Conclusions
This paper has proposed a utilization of time-varying speaker
representation derived from an attention mechanism and multi
resolutional architecture for one-shot voice conversion. To ob-
tain content and speaker representation suitable for the proposed
approach, we have also proposed a training scheme in which
the parallel data is effectively utilized. Experimental evalua-
tions showed that the proposed approach was useful for real-
time conversion system without performance degradation. In
addition, We have also qualitatively analysed the attention map
obtained by the proposed approach, and it suggested that our
model learned linguistic-related feature without manually an-
notated label.
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