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Abstract
Non-parallel many-to-many voice conversion is recently attract-
ing huge research efforts in the speech processing community.
A voice conversion system transforms an utterance of a source
speaker to another utterance of a target speaker by keeping the
content in the original utterance and replacing by the vocal fea-
tures from the target speaker. Existing solutions, e.g., StarGAN-
VC2, present promising results, only when speech corpus of the
engaged speakers is available during model training. AUTOVC
is able to perform voice conversion on unseen speakers, but it
needs an external pretrained speaker verification model. In this
paper, we present our new GAN-based zero-shot voice conver-
sion solution, called GAZEV, which targets to support unseen
speakers on both source and target utterances. Our key technical
contribution is the adoption of speaker embedding loss on top of
the GAN framework, as well as adaptive instance normalization
strategy, in order to address the limitations of speaker identity
transfer in existing solutions. Our empirical evaluations demon-
strate significant performance improvement on output speech
quality, and comparable speaker similarity to AUTOVC.
Index Terms: voice conversion, generative adversarial net-
work, zero-shot, non-parallel

1. Introduction
The emergence and development of generative adversarial net-
work, or GAN in short, has enabled efficient and effective style
transfer over image and audio domains. Motivated by the huge
success of general GAN technology, GAN-based voice con-
version has recently attracted extensive research efforts in the
speech processing community. In voice conversion, the speaker
identity is regarded as a special type of style, such that the con-
version becomes a transfer from one speaker identity to another,
as a special case of style transfer. A voice conversion system
transforms an utterance of a source speaker to the utterance of
a target speaker by keeping the content in the original utterance
and replacing by the vocal features with the target speaker. The
adoption of CycleGAN and StarGAN in speech synthesis mod-
els has brought us the state-of-the-art solutions of voice conver-
sion, e.g., CycleGAN-VC [1, 2] and StarGAN-VC [3, 4].

Although these approaches have demonstrated very promis-
ing results, they work only when both the source speaker and
the target speaker are present in the training dataset. This re-
quirement limits the usage of voice conversion in real applica-
tions. In this paper, we discuss how to circumvent the limitation
and achieve the objective of zero-shot voice conversion on non-
parallel speech corpus.

Our new approach, called GAZEV, is based on StarGAN-
VC. In GAZEV, we extend the StarGAN-VC model architecture
to handle zero-shot many-to-many conversion, in the sense that
the model is able to convert between speeches from arbitrary

speakers, regardless of the speaker’s presence in the speech cor-
pus for model training.

GAZEV introduces two new methods into the structure
of StarGAN-VC to support unseen speakers in many-to-many
voice conversion. Firstly, we design and insert a customized
adaptive instance normalization operator into StarGAN-VC.
Such an operator allows the model to better capture the impact
of speaker identity in the generative process of voice conver-
sion. Secondly, we add an additional speaker embedding loss
into the model training. This speaker embedding loss ensures
that the embedding of the converted audio is close to the target
speaker embedding, in addition, it also helps avoid the conver-
sion output to collapse to similar voices under different speaker
embeddings.

The combination of the new methods has greatly enhanced
the performance of voice conversion, especially in the most
challenging cases with unseen speakers. To summarize, we list
the core contributions of the paper as follows:

1. We present a new approach based on StarGAN-VC for
zero-shot many-to-many voice conversion problems.

2. We design a customized adaptive instance normalization
operator for voice conversion task.

3. We revise the loss function to better address the demand
of unseen speakers during inference.

4. We conduct empirical studies of our proposed approach
and compare it against state-of-the-art solutions on zero-
shot voice conversion.

The rest of the paper is organized as follows. Section 2
presents the model structure and details of the training and in-
ference algorithms. Section 3 reports the empirical results of
our approach on a dataset composed of 109 different speakers.
Section 4 reviews the existing studies on related topics and fi-
nally, Section 5 concludes the paper and discusses the future
research directions.

2. Model
In this section, we present the model architecture of GAZEV,
in comparison with StarGAN-VC. Assume we have n speakers
in the dataset with ids from 1 to n, i.e., N = {1, 2, . . . , n},
and a speech audio domain A, each audio of length T in A is
a sequence x(t) with t = 1, 2, . . . , T . When the context is
clear, we abuse x and y to denote audio sequence x(t) and
y(t). Given an input audio sequence x from speaker id cx ∈ N
and a target speaker id cy ∈ N, the objective of voice conver-
sion is to generate a high-quality audio sequence ŷ capturing
the linguistic contents from x and vocal features of speaker cy .
Moreover, we use ux and uy to denote the gender of the speaker
with utterance x and y respectively.
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Figure 1: The architecture of StarGAN-VC: It includes an au-
toencoder model G, a classification model C and a discrimina-
tor model D.

2.1. Architecture of StarGAN-VC

StarGAN-VC is a generalization of CycleGAN-VC, by employ-
ing the successful framework of StarGAN in computer vision
[5] instead of the framework of CycleGAN [6].

In Figure 1, we present the model architecture of StarGAN-
VC. Given the source utterance x and the target speaker id cy ,
the model G generates the estimated utterance ŷ based on the
vocal features of speaker cy , i.e., ŷ = G(x, cy). In order to
train the model G, StarGAN-VC employs and trains a speaker
classifier C and a discriminator D. Given an arbitrary speech
audio clip, e.g., ŷ, the classifier C attempts to retrieve the id of
the corresponding speaker. The discriminatorD takes a speaker
id, e.g., cy , and an audio clip, e.g., ŷ, as inputs, and tries to de-
tect if the audio clip is real human voice or synthesized voice.
Following the strategy of CycleGAN-VC and StarGAN-VC,
these approaches expect the model to generate highly natural
speech audio, such that discriminator is unable to tell the dif-
ference between real voice x and fake voice ŷ. Moreover, the
inclusion of classifierC’s performance on id retrieval in the loss
function encourages the model to generate speech similar to the
utterance made by the target speaker.

Generally speaking, the loss function of StarGAN-VC con-
sists of three parts, namely adversarial loss, classification loss,
cycle consistency loss, and identity mapping loss. Specifically,
the adversarial loss indicates how the generative modelG could
confuse the discriminator D, with the expectations calculated
with variables over c and x,

Ladv := −Ecx∼p(c),x∼p(x|cx)[log(D(x, cx))]

− Ex∼p(x),cy∼p(c)[log(1−D(G(x, cy), cy))]
(1)

The classification loss is the expectation of classifying the
utterance to a wrong speaker, which is applied to both original
utterance x and generated utterance ŷ.

LC
cls := −Ecx∼p(c),x∼p(x|cx)[log(Pr(cx = C(x)))] (2)

LG
cls := −Ex∼p(x),cy∼p(c)[log(Pr(cy = C(G(x, cy))))]

(3)

Finally, the cycle consistency loss, which expects the model
to work well when converting the utterance back to its original
speaker; and identity mapping loss, the reconstruction loss of
converting the voice to the same speaker.
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Figure 2: Model Architecture of GAZEV: Compared to
StarGAN-VC, we use speaker embedding instead of speaker id.
Speaker embedding is calculated by F based on gender uy of
speaker cy and a Gaussian prior z, or by E based on its origi-
nal utterance x and gender information ux of speaker cx.

Lcyc := −Ecx∼p(c),x∼p(x|cx),cy∼p(c)[‖G(G(x, cy), cx)− x‖]
(4)

Lid := −Ecx∼p(c),x∼p(x|cx)[‖G(x, cx)− x‖] (5)

2.2. Architecture of GAZEV

While StarGAN-VC performs non-parallel many-to-many
voice conversion, the source and target speaker must appear in
the training data. To enable zero-shot voice conversion possible,
we make a few revisions to the model architecture in GAZEV,
as illustrated in Figure 2. We introduce the speaker embedding
vectors sx and sy into the model, corresponding to utterance x
and y respectively. The speaker embedding is expected to pro-
vide more information than the speaker id, which is the key to
our extension to zero-shot voice conversion.

There are two different methods of generating speaker em-
bedding. A model F (z, uy) generates the embedding vector sy

by taking gender of y and a randomized Gaussian prior z which
follows a unit Gaussian distribution. Another model E(x, ux)
is deployed to encode an input utterance x and its gender to the
speaker embedding.

Another important revision to the original StarGAN-VC ar-
chitecture is the extensive replacement of speaker id cy with
gender attribute uy . The prediction target of classifier C, for
example, is now the gender of the speaker in the utterance. This
greatly simplifies the classifier, consequently making it easier
to reduce the classification loss and contributing more to the
optimization of the generative model G.

In order to exploit the rich information in speaker embed-
ding, we further introduce the strategy of AdaIn into the gen-
erative model G [7]. The key idea of AdaIn is a special case
of instance normalization, with scaling and bias variables con-
trolled by the style embedding. In GAZEV, the style of speech
is actually the speaker embedding. This leads to the insertion of
the following operator into the generative model G, replacing
the standard normalization operator after the convolution oper-
ations:

AdaIN(x, s) = f(s)
(x− µ(x)

σ(x)

)
+ g(s), (6)

in which x is an input to the operator, s is the input speaker
embedding, f(s) and g(s) are two affine transformations ap-
plied on s to generate style-dependent scaling and bias factor.
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By adding this AdaIN architecture to our generator, the new
generator can be defined as G(x, sy), which takes an embed-
ding vector sy as inputs instead of the speaker id cy . The dis-
criminatorD(x, u) is defined to predict whether the input audio
is real or fake under the specific gender, male or female. And
the classifier C(x) is used to infer whether the audio is from a
voice of male or female.

Based on the definitions above, we redefine the loss func-
tion to reflect the change of model architecture. The loss func-
tion in the training of the model consists of five parts, in-
cluding adversarial loss, classification loss, cycle consistency
loss, identity mapping loss, and speaker embedding loss. The
first four types of losses are formulated as follows, with z ∼
N (0, I):

Ladv :=− Eux∼p(u),x∼p(x|ux)[log(D(x, ux)]

− Ex∼p(x),uy∼p(u)[log(1−
D(G(x, F (z, uy)), uy))]

(7)

LC
cls :=− Eux∼p(u),x∼p(x|ux)[log(Pr(ux = C(x))] (8)

LG
cls :=− Ex∼p(x),uy∼p(u)[log(Pr(uy = C(G(x, F (z, uy))))]

(9)

Lcyc :=− Eux∼p(u),x∼p(x|ux),uy∼p(u)[

‖G(G(x, F (z, uy)), E(x, ux))− x‖]
(10)

Lid := −Eux∼p(u),x∼p(x|ux)[‖G(x, E(x, ux))− x‖] (11)

Speaker embedding loss includes the error on the embed-
ding when encoderE calculates the speaker embedding over the
converted speech audio and compares it against the true speaker
embedding of the target speaker. We also try to maximize the
divergence of output speeches under different speaker embed-
dings, to avoid the voices to collapse. This leads to the follow-
ing definition:

Lspk :=− Ex∼p(x),uy∼p(u)[

‖E(G(x, F (z, uy)), uy)− F (z, uy)‖]
+ Ex∼p(x),uy∼p(u)[

‖G(x, F (z1, uy))−G(x, F (z2, uy))‖]

(12)

3. Experiments
3.1. Dataset

In our experiments, we train GAZEV and our baseline mod-
els with English Multi-speaker Corpus for CSTR Voice Cloning
Toolkit (VCTK) [8], which contains 109 native English speak-
ers. In VCTK, there are around 400 utterances for each speaker.
80 speakers are used in our training dataset. The MCC(mel
cepstral coefficients)s are extracted using WORLD vocoder [9],
with dimension 36, and each record is segmented with length
256 frames. In the testing dataset, we include 10 seen speakers
and 10 unseen speakers. For both seen and unseen speakers, the
genders are evenly distributed. We run our testings to cover all
different cases, between speakers of different genders, as well
as between seen and unseen speakers.

3.2. Model Setup

The model is composed of five trainable components: the
Generator (G), the Discriminator (D), the Classifier (C),
the Speaker Embedding Generator (F), and the Speaker En-
coder(E).

The Generator consists of three parts, all of which use con-
volution neural networks (CNN): 2 down-sampling blocks, with
initial channel number 64, and kernel size (4,8), down-sampling
with a factor of 2; conversion blocks, with first 3 residual blocks
using instance normalization, and next 3 residual blocks using
AdaIN with affine transformations, the channel size is 256, and
kernel size is 3; 2 up-sampling blocks, with initial channel size
256, and kernel size (4,4), up-sampling with a factor of 2.

For the Discriminator, we employ the discriminator from
PatchGAN [10, 11, 12]. Instead of applying the fake/real clas-
sification over the complete audio clip, PatchGAN attempts to
classify over patches or segments of audios. This strategy in-
creases the difficulty of classifier and turns out to be effective in
improving the performance of standard discriminator in voice
transfer algorithms [2]. The Discriminator is composed of 5
down-sampling blocks with initial channel size 64, kernel size
4, and down-sampling with a factor of 2. The Classifier shares
the layers except the output layer with the Discriminator.

Speaker Embedding Generator is simply a 5 layers MLP
with dimension 512, and ReLU activation function. Speaker
Encoder is composed of multiple pre-activation residual blocks
as defined in [13]. There are 5 such residual blocks, each with
channel size 32 and kernel size 3. For the random sample z
and speaker embedding s, the dimensions are set to 16 and 64
respectively.

When training GAZEV, the weight over the discriminator
loss is 1, while the weights for all other losses are 10. Each
batch contains 32 samples in the training, and the learning rate
is 0.0001. We test the performance of GAZEV after training
1,000,000 steps with Adam optimizer.

3.3. Evaluation Criterion

We employ AUTO-VC as our baseline approach in the ex-
periments, because it is the only zero-shot voice conversion
algorithm available for testing. AUTO-VC uses a simple
auto-encoder architecture, with an external speaker verification
model pre-trained following GE2E [14]. Ideally, the encoder in
AUTO-VC encodes the content information of the input audio.
The resulting content together with the target speaker embed-
ding, calculated using the pre-trained model, are fed into the
decoder to generate the output audio clip with identical linguis-
tic content as well as the target speaker’s voice. To build the
baseline model, we use the implementation from the authors of
AUTO-VC. In testing, we take the model after 2,000,000 train-
ing steps. To make a fair comparison, the model of AUTO-VC
is trained using the same 80 speakers’ speech corpus as GAZEV
does.

MOS test is used for evaluating both naturalness and sim-
ilarity of the results. The MOS score is from 1 to 5, with 0.5
increments. Therefore, there are 9 options for the evaluations.
Regarding naturalness MOS, human annotators are given with
converted audios. The annotator needs to provide a MOS score
to the quality of the speech audio, based on human’s perception.
A higher score means better speech naturalness. Regarding sim-
ilarity MOS, in addition to the sample audio, a reference audio
of the target speaker’s voice is also provided. Similar to natu-
ralness MOS, the annotator compares the reference audio and
the target audio before providing a score from 1 to 5.

3.4. Performance Evaluation

As stated in Section 3.1, the test dataset consists of 10 seen
speakers and 10 unseen speakers. To compose the 4 differ-
ent configurations of voice conversion, there are 400 converted
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Figure 3: The naturalness and similarity MOS scores for AUTO-
VC and GAZEV on gender conversion
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Figure 4: The naturalness and similarity MOS scores for AUTO-
VC and GAZEV on seen/unseen conversion

voices in the experiment result. The result is further divided
into 4 categories based on the genders of the speakers on both
source and target sides, i.e., female-to-female (F2F), female-to-
male (F2M), male-to-female (M2F) and male-to-male (M2M).
Moreover, the result is also divided into 4 categories based
on the types of conversion between seen and unseen speakers,
i.e., seen-to-seen (S2S), seen-to-unseen (S2U), unseen-to-seen
(U2S) and unseen-to-unseen (U2U).

The test results1 are summarized in Figure 3 and Figure 4.
In the figures, GAZEV significantly outperforms AUTO-VC
on speech naturalness. Note that the naturalness of the con-
verted audios is above 4.0 in MOS results, even in the category
of unseen-to-unseen (U2U). It is a huge improvement over the
only zero-shot voice conversion approach AUTO-VC in the lit-
erature. GAZEV also achieves similar performance on simi-
larity MOS, although AUTO-VC is equipped with a well pre-
trained speaker encoder module. Note that the speaker encoder
is trained on a much larger dataset with 3,549 speakers. On the
contrary, GAZEV learns a speaker embedding space only from
these 80 speakers from the training data for voice conversion.
We believe the performance of GAZEV could be even better,
if a larger speech corpus is used in the training for our speaker
embedding modules, i.e., E and F as in Figure 2.

4. Related Work
The earlier voice conversion methods commonly use Gaussian
mixture models(GMM) [15, 16, 17], restricted Boltzmann ma-
chine [18, 19], feed-forward neural networks [20, 21, 22], re-
cursive neural networks (RNN) [23, 24], and convolution neural

1Demo samples are available at https://speech-ai.github.io/gazev/

networks (CNN) [25]. All these methods need parallel training
data, such that the training pairs are text aligned. In order to get
desirable results, the training pairs also need to be time-aligned.
The text alignment and time alignment restrictions make the
training data extremely hard to collect. To relax the limita-
tion above, voice conversion models on non-parallel corpus are
proposed. CycleGAN-VC is a GAN based model performing
voice conversion between two speakers without parallel train-
ing data. It is based on the CycleGAN model widely used in
the image-to-image style transfer. The cycle consistency loss
in CycleGAN-VC is the key to the success of the model even
without a parallel corpus for training. However, CycleGAN-
VC is designed for voice conversion between two speakers only,
namely one-to-one voice conversion. To each pair of speak-
ers, a CycleGAN-VC model must be independently trained.
StarGAN-VC is the first model To support many-to-many voice
conversion on a non-parallel corpus. During training, the con-
version may happen between any two speakers in the dataset,
and the same loss in CycleGAN-VC is deployed. Moreover,
there is an additional classification loss introduced in StarGAN-
VC, which encourages the model to generate speech audio sim-
ilar to the target speaker’s voice. There are multiple variants of
CycleGAN-VC in the literature. In [26], Chou et al. propose
a two-stage training scheme on top of CycleGAN. In the first
stage, the model introduces a speaker classifier, and uses a re-
construction loss and a classification loss. In the second stage, it
introduces another classifier and uses GAN loss and a classifica-
tion loss. CC-GAN [27] is another variant of CycleGAN-VC,
which uses additional conditional inputs of speaker labels to
achieve many-to-many voice conversion. However, StarGAN-
VC performs better and is even simpler.

In the computer vision domain, StarGAN v2 [28] is pro-
posed as an enhanced version of StarGAN. It adopts similar
tricks as in GAZEV, including the AdaIN operators and the style
embedding with different styles.

On another research direction, variational auto-encoders
(VAE) is often used in speech synthesis and voice conversion,
such as vanilla VAE-VC [29]; CDVAE-VC [30] utilizes cross-
domain VAE on two different representations of the audios;
ACVAE-VC [31] uses an auxiliary classifier for the generator
to generate voices to the correct speakers as StarGAN-VC does;
VAW-GAN [32] adds a discriminator after the audio output and
also adds the WGAN [33] loss. However, the naturalness of
the output speech by VAE-based approaches is way worse than
GAN-based approaches. AUTO-VC is the latest attempt with
a simple auto-encoder architecture. It is able to perform zero-
shot voice conversion, since it uses a pretrained speaker encoder
model providing the speaker embedding for an unseen target
voice.

5. Conclusion and Future Work
In this paper, we propose, GAZEV, a zero-shot voice conver-
sion approach by extending the idea of StarGAN to support
unseen speakers in inference. It beats the state-of-the-art so-
lution, AUTO-VC, by a huge margin on speech naturalness,
while achieving almost identical speaker similarity as AUTO-
VC. We believe the speaker embedding is the key to the suc-
cess of GAZEV. It can be further improved by adopting a better
embedding module with more speech corpus data. The replace-
ment of speaker id with speaker gender implies that a simpler
classifier is beneficial to the generative model. However, it re-
mains unclear how to find the best balance between the classifier
complexity and generative model complexity.
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