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Abstract
This paper presents an adversarial learning method for
recognition-synthesis based non-parallel voice conversion. A
recognizer is used to transform acoustic features into linguistic
representations while a synthesizer recovers output features
from the recognizer outputs together with the speaker identity.
By separating the speaker characteristics from the linguistic
representations, voice conversion can be achieved by replacing
the speaker identity with the target one. In our proposed
method, a speaker adversarial loss is adopted in order to
obtain speaker-independent linguistic representations using the
recognizer. Furthermore, discriminators are introduced and a
generative adversarial network (GAN) loss is used to prevent
the predicted features from being over-smoothed. For training
model parameters, a strategy of pre-training on a multi-speaker
dataset and then fine-tuning on the source-target speaker pair
is designed. Our method achieved higher similarity than the
baseline model that obtained the best performance in Voice
Conversion Challenge 2018.

Index Terms: voice conversion, recognition-synthesis, adver-
sarial learning

1. Introduction
Voice conversion (VC) aims to modify a source utterance
into an output utterance, which sounds as if it is uttered by
a target speaker but keeps the linguistic contents unchanged
[1, 2]. In recent years, neural networks, such as deep neural
networks (DNN) [3, 4], recurrent neural networks (RNN) [5, 6]
and sequence-to-sequence (seq2seq) networks [7–9], have been
applied to build the acoustic models for voice conversion and
achieved great success.

According to the characteristic of training data, VC meth-
ods can be roughly categorized into two classes, i.e. parallel VC
and non-parallel VC [10]. In parallel VC, an acoustic model is
trained with paired source-target acoustic frames or sequences.
However, it’s difficult to do so in non-parallel VC due to
the lack of parallel training data. Many methods have been
proposed for non-parallel VC and recognition-synthesis (Rec-
Syn) is one of them [11–15]. At the conversion stage of this
method, an automatic speech recognition (ASR) model is first
employed to extract linguistic-related features, e.g. phonetic
posteriorgrams (PPGs) [12] or bottleneck features [14], from
the source speech. Then, a synthesis model is applied to predict
the acoustic features of the target speaker. However, without
explicitly disentangling linguistic and speaker representations,
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the outputs of the ASR model often contain the information of
source speakers, which may harm the similarity of converted
voice. Besides, the converted voice often suffers from the over-
smoothing issue [16] because the mean square error (MSE)
criterion is usually adopted for training the synthesis model.

To overcome these limitations, an adversarial learning
method for Rec-Syn based non-parallel VC is presented in this
paper. In our method, a recognizer is adopted for extract-
ing linguistic representations and a synthesizer is adopted for
predicting the converted acoustic features. When extracting
linguistic representations, a speaker adversarial learning loss
is employed besides the phoneme recognition loss, thus the
linguistic representations are processed to be speaker-agnostic.
Also, generative adversarial network (GAN) losses [17] are
used in order to alleviate the over-smoothing effect. The
WaveNet vocoder [18] is adopted for recovering the waveforms
of converted voice. For training model parameters, an external
multi-speaker dataset is first adopted for pre-training. Then, the
model is adapted to the desired conversion pair by fine-tuning.

Experiments are conducted to compare our method with
a Rec-Syn baseline, which achieved the best performance in
Voice Conversion Challenge 2018 [14]. The experimental
results showed that our proposed method obtained better per-
formance, especially on the similarity of converted speech.
Ablation studies were also carried out to demonstrate the
effectiveness of several important components in our proposed
model.

2. Related Work
Our method is similar to the auto-encoder (AE) based VC
with speaker adversarial learning [19–22]. Polyak et al. [19]
proposed a WaveNet based AE model for VC with a speaker
confusion network. Chou et al. [20] employed an adversarial
trained AE for VC and the voice quality is further improved
by another residual generator and discriminator. In both our
method and previous studies, the acoustic features are first
transformed into speaker-independent representations , which
are then decoded back into acoustic features. The main dif-
ference between our method and the AE-based VC is that our
method utilizes text supervision for building the ASR module
and extracting linguistic representations explicitly at training
stage. Therefore, our method belongs to the category of Rec-
Syn based VC rather than the AE-based one.

3. Proposed Method
3.1. Structure overview

Our model is consist of a recognizer R for transforming the
acoustic features into linguistic representations, a phoneme
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Figure 1: (a) The diagram of our proposed method at training
stage. (b) The conversion process of our proposed method. X ,
H and y represent acoustic features, linguistic representations
and speaker label respectively.

classifier Cp for phoneme label classification, a speaker classi-
fier Cs for eliminating speaker information, a synthesizer S for
recovering acoustic features, and discriminators D for obtaining
GAN losses. Figure 1 (a) depicts the overall structure of the
proposed method at training stage. During conversion, Cp,
Cs and D are discarded as shown in Figure 1 (b). Details
and training losses of these components are described in the
following subsections.

3.2. Recognition process

Linguistic representations are extracted by the recognizer as
H = R(X), where X = [x1, . . . ,xNx ] and Nx are
acoustic features and its frame number respectively. H =
[h1, . . . ,hNh ] and Nh are linguistic representations and its
frame number respectively. The recognizer is built with two-
layer bi-directional LSTM interleaved with strided CNN. It
decreases the sampling rate of input sequences by 4 times thus
we have Nh = Nx/4.

With inputs of linguistic representations, the phoneme
classifier predicts the sequence of phoneme labels as P ′ =
Cp(H), where P ′ = [p′

1, . . . ,p
′
Np

] and Np is the length
of phoneme sequence. Cp is one-layer LSTM equipped with
attention module [23] and auto-regressive connection. A cross-
entropy loss is used as

Lp =
1

Np
Σ

Np

n=1CE(pn,p
′
n). (1)

The speaker classifier tries to infer the speaker identity from
linguistic representations as Y ′ = Cs(H) frame by frame,
where each frame in Y ′ = [y′

1, . . . ,y
′
Nh

] is the probability
distribution of the predicted speaker. It is built with a 3-layer
CNN. A cross entropy loss of speaker classification is used for
Cs as

Ls =
1

Nh
Σ

Nh
n=1CE(y,y′

n), (2)

where y represents the ground-truth speaker label encoded as
one-hot vector. Meanwhile, the recognizer is trained adversar-
ially to make H speaker-invariant. As suggested in previous
studies of learning disentangled representations [24], a speaker
adversarial loss is applied to the recognizer as

Ladv =
1

Nh
Σ

Nh
n=1MSE(

1

|y| ,y
′
n), (3)

where |y| represents the number of speakers in the training
dataset. Therefore, the loss penalizes the distance between prior

and predicted distribution of speaker probabilities. To strength-
en the adversarial training, a secondary speaker classifier C′

s

is also applied to the outputs of the first LSTM layer in R.
And it’s also trained with a classification loss L′

s and passes
an adversarial loss Ladv′ .

As indicated by Ocal et al. [21], the error rate of the
optimal speaker classifier relates to an upper bound of mutual
information I(y;H). In order to approximate the optimal
classifier, the speaker classifiers are updated K times for each
training step in our experiments.

3.3. Synthesis process

The synthesizer recovers acoustic features from the concatena-
tion of linguistic representations and speaker label as X ′ =
S(H,y), where X ′ = [x′

1, . . . ,x
′
Nx

]. The linguistic and
embedded speaker label are repeated to the length of acoustic
features and then concatenated as the inputs of the synthesizer.
The synthesizer architecture basically follows the decoder in
Tacotron model [25, 26]. However, it is connected to the recog-
nizer outputs frame-by-frame rather than utilizing an attention
block. The predicted acoustic features are penalized by the
MSE loss as

Lrec =
1

Nx
ΣNx

n=1MSE(x′
n,xn). (4)

Simply applying the MSE criterion often leads to over-
smoothed acoustic features. In order to generate more realistic
acoustic features, GAN losses are further incorporated during
model fine-tuning. The recognizer-synthesizer module is used
as the generator, i.e. X ′ = S(R(X),y). Speaker-dependent D
is adopted to classify the natural or generated acoustic features
for each speaker. The discriminators are based on 4-layer 1D-
CNN followed by a mean pooling layer. Wasserstein GAN with
gradient penalty (WGAN-GP) [27,28] is chosen as the objective
function in order to stabilize the training process of GAN. The
discriminators are trained with the loss as

Ldis = D(X ′)− D(X) +wgp ∗ (‖ ∇X̂D(X̂) ‖2 −1)2, (5)

where wgp represents the weighting factor of GP loss, and X̂
represents randomly sampled features by interpolating between
X and X ′. The generator is trained with an adversarial loss

Lgan = −D(X ′). (6)

3.4. Training strategy

The training process of our proposed model includes pre-
training on an external multi-speaker dataset and fine-tuning
on the pair of source-target speakers. Such design aims
to transfer the knowledge learned from large multi-speaker
dataset to one pair of speakers. It is expected to increase
the model’s generalization ability especially when the training
data of desired pair is insufficient. Despite that this paper
concentrates on the conversion between a pair of two-speakers,
our method can be readily extended to multiple speakers for
many-to-many VC.

In summary, four kinds of losses are imposed during pre-
training. They are the phoneme classification loss Lp, speaker
classification losses Ls and Ls′ , adversarial losses Ladv and
Ladv′ , and the reconstruction loss Lrec. Ladv and Ladv′
are scaled by wadv and wadv′ respectively. Then losses are
added together for training the model. During fine-tuning, two
additional speaker embeddings are initialized randomly while
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Table 1: Details of model configurations.

R

Conv1D-k5s2c512-BN-ReLU-Dropout(0.2) →
1 layer BLSTM, 256 cells each direction →
Conv1D-k5s2c512-BN-ReLU-Dropout(0.2) →
1 layer BLSTM, 256 cells each direction → H

Cp one layer LSTM, 128 cells with attention

Cs
Conv1D-k5s1c256-BN-LeakyReLU ×3 →
FC-99-Softmax

S

Prenet: FC-256-ReLU-Dropout(0.5) ×2

RNN: 2 layer LSTM, 512 cells,

2 frames are predicted each RNN step

Postnet: Conv1D-k5s1c256-BN-ReLU-Dropout(0.2) ×5 →
Conv1D-k5s1c80, with residual connection

from the input to output

D
Conv1D-k5s2c256-LeakyReLU ×3 →
Conv1D-k5s2c1 → mean pooling

“FC” represents fully connected layer. “BN” represents
batch normalization. “Conv1D-kksscc” represents 1-D
convolution with kernel size k, stride s and channel c.
“×N” represents repeating the block for N times. Structure
of S follows the decoder in the Tacotron model [25, 26].

the rest parameters are loaded from the pre-trained model. In
addition to the losses applied during pre-training, GAN losses
Ldis and Lgan are further adopted. Here, Lgan is first scaled
by wgan then added to the total loss.

4. Experiments
4.1. Experimental conditions

One female speaker (slt) and one male speaker (rms) in the
CMU ARCTIC dataset1 were used as the pair of speakers for
conversion in our experiments. For each speaker, the evaluation
and test set both contained 66 utterances. The non-parallel
training set for each speaker contained 500 utterances. Smaller
training sets containing 100, 200, 300 and 400 utterances were
also constructed by randomly selecting a subset of the 500
utterances for training. The multi-speaker VCTK dataset [29]
was utilized for model pre-training. Altogether 99 speakers
were selected from VCTK dataset. For each speaker, 10 and
20 utterances were used for validation and testing repsectively.
The remaining utterances were used as training samples. The
total duration of training samples was about 30 hours.

For acoustic features, 80-dimensional Mel-spectrograms
were extracted every 10 ms and then scaled to logarithmic
domain. Adam [30] optimizer was used with a learning rate
of 0.001. The batch size was 32 and 8 at the pre-training
and fine-tuning stage respectively. The weighting factors of
adversarial losses were set as wadv = 100, wadv′ = 5 and
wadv = 1, wadv′ = 0.1 during pre-training and fine-tuning
respectively. K was set as 2. For the GAN loss, wgp and
wgan were set as 10 and 0.05 respectively. After fine-tuning,
the accuracy of the speaker classifier on the test sets of slt and
rms was 72.2%. In comparison, it was 100.0 % without using
adversarial losses. And the accuracy of phoneme classifier was
89.4%.

The details of our model structure are summarized in
Table 1. The implementation of WaveNet vocoder followed our
previous work [14]. Since this paper focuses on the acoustic

1http://festvox.org/cmu_arctic/index.html

Table 2: MCDs and F0 RMSEs on test set using training sets of
different sizes. Lower is better.

# of Utt.

rms-to-slt

VCC2018 Proposed

MCD F0 RMSE MCD F0 RMSE

(dB) (Hz) (dB) (Hz)

100 3.420 14.573 3.323 18.675

200 3.411 15.100 3.252 16.511

300 3.399 14.207 3.246 17.134

400 3.386 14.784 3.246 17.357

500 3.376 15.042 3.213 17.055

# of Utt.

slt-to-rms

VCC2018 Proposed

MCD F0 RMSE MCD F0 RMSE

(dB) (Hz) (dB) (Hz)

100 3.218 16.226 3.286 18.655

200 3.200 15.956 3.245 17.546

300 3.188 15.455 3.175 17.638

400 3.179 15.595 3.173 17.204

500 3.171 15.771 3.147 17.484

models for VC, the same WaveNet vocoders trained with 500
utterances were used when varying the size of data for fine-
tuning acoustic models.

We compared our proposed method with a Rec-Syn base-
line [14] (i.e., VCC2018)2. In this method, bottleneck features
were extracted by an ASR model trained on about 3000 hours of
external speech data as linguistic descriptions and were used as
the inputs of speaker-dependent synthesis models. This method
achieved the best performance on the non-parallel VC task of
Voice Conversion Challenge 2018.

4.2. Objective evaluation

For objective evaluation, F0 and 25-dimensional MCCs features
were extracted by STRAIGHT [31] from the reconstructed
waveforms for evaluation. Then, Mel-cepstrum distortions
(MCD) and root mean square error of F0 (F0 RMSE) on test
set were reported in Table 2.

Compared with the VCC2018 baseline, our proposed
method achieved lower MCD except in slt-to-rms conversion
given 100 and 200 training utterances. However, for F0 RMSE
metric, the VCC2018 achieved better results compared to the
proposed method. This results indicated the potential of further
improving F0 prediction in our proposed method. We should
notice that VCC2018 method exploited a large amount of data
(i.e., 3000 h) for training the ASR model. On the other hand,
the proposed method was pre-trained on much smaller VCTK
dataset (i.e., 30 h).

In order to analyze the effects of various strategies used
in our model, ablation studies were further conducted. For
investigating the effects of speaker adversarial training, we
removed the losses of Ladv and Ladv′ (i.e., “-adv”). For
investigating the effects of phoneme classification, the loss Lp

was removed (i.e., “-phone”). For investigating the effects
of pre-training, the model was initialized randomly before
fine-tuning (i.e., “-pretrain”). For investigating the effects
joint optimization, the recognizer and synthesizer were trained

2 Audio samples of our experiments are available at https://
jxzhanggg.github.io/advVC/.
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Table 3: MCDs and F0 RMSEs in ablation studies of proposed
method. Lower is better.

Methods

rms-to-slt slt-to-rms

MCD F0 RMSE MCD F0 RMSE

(dB) (Hz) (dB) (Hz)

Proposed 3.213 17.055 3.147 17.484
-adv 3.967 29.140 3.683 22.929

-phone 3.781 22.232 3.753 20.038

-pretrain 4.228 27.177 3.911 44.790

-joint 3.267 17.223 3.214 17.550

-tunerec 3.444 16.905 3.411 18.968

-all 4.287 24.443 3.900 35.969

separately (i.e., “-joint”). An experiment was also conducted
that fixed the recognizer and only adapted the synthesizer on the
target speaker during fine-tuning (i.e., “-tunerec”). In analogy
to the VCC2018 baseline, a conventional Rec-Syn model was
built (i.e., “-all”) using the same training data and model
structure as those of our proposed method. In this method,
the recognizor was first trained with the phoneme classification
loss for extracting linguistic features. Then, the synthesizer was
pretrained and finetuned on the target speaker.

Table 3 summarizes the results of ablation studies. From
the table, we can see that performance of the proposed method
degraded without using either the speaker adversarial loss
or the phoneme classification loss. When listening to the
converted samples for further examination, it’s found that
the voice converted by “-adv” method suffered from low
similarity while those converted by “-phone” method had low
intelligibility. For the “-pretrain” method, objective errors
increased drastically. And the converted voice was hardly
intelligible. Objective errors slightly rose when using the “-
joint” method. It indicated that training the recognizer and the
synthesizer separately leaded to sub-optimal solutions. For the
“-tunerec” method, the spectral distortion increased and the F0

error was close to the proposed method. These results indicated
fine-tuning the whole model on both source and target data
improved the performance of the model. From the last row of
the table, we can see the improvement of our proposed method
over conventional Rec-Syn method was significant .

Figure 2 (a) and (c) show the Mel-spectrograms of one
source utterance and its converted voice using our proposed
method respectively. The converted Mel-spectrogram is similar
to that of natural reference in Figure 2 (d). Comparing the
Mel-spectrogram converted by our proposed method to that
converted by the method without GAN loss in Figure 2 (b),
we can see that the GAN loss helped to alleviate the over-
smoothing problem and to enhance the format structures.

4.3. Subjective evaluation

The “-all” method in previous ablation study, the VCC2018
baseline and the proposed method were compared in subjective
evaluations. For each experiment, at least thirteen listeners were
involved. Samples were presented to them using headphones in
random order. They were asked to give a 5-scale opinion score
(5: excellent, 4: good, 3: fair, 2: poor, 1: bad) on both similarity
and naturalness for each converted utterance. 20 utterances
were selected randomly from the test set and two conversion
directions (i.e., slt-to-rms and rms-to-slt) were evaluated for
each method.

Table 4: Mean opinion scores with 95% confidence intervals of
different methods on test set. Higher is better.

# of Utt. -all VCC2018 Proposed

100
Nat. 1.514 ± 0.091 3.714 ± 0.130 3.628 ± 0.119

Sim. 1.471 ± 0.086 3.764 ± 0.153 3.850 ± 0.134

500
Nat. 1.493 ± 0.093 3.636 ± 0.132 3.950 ± 0.101

Sim. 1.457 ± 0.088 3.685 ± 0.154 4.129 ± 0.120

Figure 2: Mel-spectrograms of (a) a source utterance, (b) the
voice converted by our proposed method without GAN loss, (c)
the voice converted by our proposed method and (d) the target
utterance.

From Table 4, we can see that the proposed method im-
proved the naturalness and similarity of the “-all” method with
a large margin. It indicated that our proposed method exploited
training data more efficiently with adversarial learning. Our
method outperformed the VCC2018 baseline given 500 training
utterances of both speakers for fine-tuning, in terms of both
naturalness and similarity. In the condition of using 100 training
utterances, our method achieved higher similarity while lower
naturalness than the VCC2018 method. Despite that our method
could obtain better disentangled representations, the VCC2018
baseline learned more fine-grained linguistic descriptions by
training on large external corpus. This is especially favorable
when the training data of the conversion pair is scarce.

5. Conclusions

In this paper, a method for non-parallel voice conversion is
proposed. Our model is based on the recognition-synthesis
framework and a speaker classifier module is introduced for
speaker adversarial learning. We also incorporate GAN losses
for boosting the quality of converted voice. The model is
first pre-trained on a multi-speaker dataset then fine-tuned on
the desired conversion pair. Both objective and subjective
evaluations proved the effectiveness of our method. Our future
work will try to further improve the performance of our method
by pre-training on larger datasets.
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