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Abstract
Audio-visual speech recognition (AVSR) technologies have
been successfully applied to a wide range of tasks. When de-
veloping AVSR systems for disordered speech characterized by
severe degradation of voice quality and large mismatch against
normal, it is difficult to record large amounts of high quality
audio-visual data. In order to address this issue, a cross-domain
visual feature generation approach is proposed in this paper.
Audio-visual inversion DNN system constructed using widely
available out-of-domain audio-visual data was used to generate
visual features for disordered speakers for whom video data is
either very limited or unavailable. Experiments conducted on
the UASpeech corpus suggest that the proposed cross-domain
visual feature generation based AVSR system consistently out-
performed the baseline ASR system and AVSR system using
original visual features. An overall word error rate reduction of
3.6% absolute (14% relative) was obtained over the previously
published best system on the 8 UASpeech dysarthric speakers
with audio-visual data of the same task.
Index Terms: Speech Disorders, Audio-Visual Speech Recog-
nition, Audio-Visual Inversion, Cross-Domain Adaptation

1. Introduction
Human speech perception is inherently a bimodal process that
uses both acoustic and visual information. Previous researches
have shown that incorporating visual modality can improve the
performance of speech recognition systems when being used in
noisy environment [1, 2, 3, 4] or on impaired speech [5, 6, 7,
8, 9]. This motivates the use of audio-visual speech recogni-
tion (AVSR) systems for a wide range of applications targeting
normal speech [10, 11, 12, 13, 14, 15].

The application of AVSR technologies to disordered speech
faces two major challenges. First, it is difficult to record large
amounts of high quality audio-visual (AV) data which is es-
sential for developing AVSR systems using state-of-the-art data
intensive deep learning techniques. Second, the visual infor-
mation may not always be available, e.g. the commonly used
benchmark UASpeech disordered speech corpus [16] only con-
tains 8 speakers out of a total 16 with AV data. In addition,
the visual data quality may be poorly usable due to the diffi-
culty in tracking the lip regions of disordered speakers, resulting
from their head movements or different angles facing the cam-
era caused by severe medical conditions such as cerebral palsy
and Parkinson disease.

*Equal contribution. Part of this work was done while the first
author was an intern at Tencent AI lab.

Among the previous AVSR research for disordered
speech [5, 6, 7, 8], these two issues remain largely unaddressed
to date. Our previous work [8] attempted to address the first is-
sue using Bayesian gated neural networks (BGNN) to more ro-
bustly use limited AV data containing severely impaired speak-
ers with poor quality video data. However, the BGNN system
is not applicable to speakers with no visual information. To the
best of our knowledge, there was no previous work attempting
to solve this missing visual modality problem for disordered
speech recognition. More importantly, the overall quantity of
the AV training data remains limited. This creates difficulty in
developing larger and more powerful AVSR systems to further
improve disordered speech recognition performance.

A possible solution to deal with the second issue on miss-
ing visual modality is to use the AV inversion approaches to
generate missing visual features, inspired by early research on
acoustic-to-articulatory [17, 18, 19, 20] and audio-visual in-
version techniques [21, 22, 23]. However, a direct applica-
tion of these methods is problematic. The existing AV dis-
ordered speech corpora are usually quite small in size and in-
sufficient for AV inversion model training. Alternatively, more
widely available, out-of-domain AV normal speech data, e.g.
TV broadcast materials in the lip reading sentences 2 (LRS2)
dataset [24], can be used to train AV inversion models. Unfor-
tunately, this method cannot be directly applied to disordered
speech given the large mismatch against normal speech, thus
rendering the generated visual features unreliable for system
development. The domain mismatch between normal and dis-
ordered speech needs to be minimized before such inversion
systems trained on out-of-domain data can be used, as found
in previous research [22] on cross-domain visual feature gen-
eration for domain mismatched normal speech data, e.g. wide
band broadcast speech versus narrow band telephone conversa-
tion.

In order to address both data sparsity and missing visual
modality issues mentioned above, a cross-domain visual feature
generation approach was adopted. A high quality AV parallel
dataset, i.e. the LRS2 dataset [24], was used to build deep AV
inversion systems to generate visual features for 16 disordered
speakers in the UASpeech corpus [16]. Cross-domain adap-
tation was performed to minimize the mismatch between the
LRS2 and UASpeech audio data. The resulting cross-domain
adapted AV inversion system was further applied to augmented
disordered speech audio data. As a result, the total amount of
AV data for AVSR system development was increased by up to
nine folds compared to the 8 UASpeech speakers’ AV subset.

The main contributions are summarized below. To the

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-2282711



best of our knowledge, this is the first work to explore cross-
domain visual feature generation approaches for audio-visual
disordered speech recognition. In contrast to previous research
where both data sparsity and missing visual modality issues
were unaddressed, this paper presents a dual purpose solution
targeting both issues. Experiments conducted on the UASpeech
corpus suggest that the proposed cross-domain visual feature
generation based AVSR system consistently outperformed the
baseline ASR system and AVSR system using original visual
features. An overall word error rate reduction of 3.6% absolute
(14% relative) was obtained over the previously published best
system [8] on the 8 UASpeech dysarthric speakers with audio-
visual data of the same task.

The rest of the paper is organized as follows. The baseline
ASR and AVSR systems are described in section 2. Section 3
describes the AV inversion systems trained on the LRS2 dataset.
Section 4 details the cross-domain visual feature generation ap-
proach. Experiments setup and results are shown in section 5.
The last section concludes and discusses possible future work.

2. Audio-visual Speech Recognition
This section describes the DNN based ASR and AVSR sys-
tems architecture on which the experiments were conducted in
this paper. The learning hidden unit contributions (LHUC) [25]
based speaker adaptive training (SAT) was also used.
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Figure 1: The ASR and AVSR systems architecture developed for
the UASpeech disordered speech corpus. Different connection
combinations in this figure form different systems. For example,
retaining connections (a) and (b) while discarding others leads
to the ASR baseline system; Disconnecting (b) and retaining (a),
(c) and (d) (for AV modality fusion) produces the AVSR baseline
system. The connections (e) and (e)+(f) are used for LHUC
speaker adaptive training of ASR and AVSR systems.

The baseline ASR and AVSR systems share the same main
structure regardless of the connections (c), (d), (e) and (f),
shown in Fig. 1. The main structure is composed of seven hid-
den layers. Each hidden layer contains a set of neural operations
performed in sequence: affine transformation (in green), recti-
fied linear unit (ReLU) activation (in yellow) and batch normal-
ization (in orange). To reduce network parameters, linear bot-
tleneck projection layers (in light green) are applied to the in-
puts of the intermediate five hidden layers. The first six hidden
layers are equipped with dropout operations (in grey) to avoid
over-fitting. Softmax activation functions (in dark green) are
used in the output layer. Additionally, we place two skip con-
nections in the main structure to speed up the training process

and circumvent the vanishing gradient problem. One skip con-
nection is positioned between the outputs of the first and third
layer, and the other is between the outputs of the fourth and
sixth layer. The AVSR system is produced by adding a visual
subnet using connections (c) and (d). The output of the visual
subnet is then added to the sixth layer’s output before the next
ReLU activation.

Multi-task learning (MTL) [26] was adopted to train the
systems illustrated in Fig. 1. The output targets for the two
tasks are frame-level tied triphone states and monophone align-
ments respectively, obtained from a GMM-HMM system imple-
mented using the HTK toolkit [27]. Incorporating monophone
alignments can reduce the risk of over-fitting to unreliable tri-
phone states computed from disordered speech. The loss func-
tion of the mutli-task learning is as follows:

LMTL = λ·Ltristate + (1− λ)·Lmono (1)

The above loss function uses the cross-entropy criterion, where
Ltristate is the loss of the tied triphone state task and Lmono is
the loss of the monophone task. 0 ≤ λ ≤ 1 is the weight ratio.

To handle the large variability among different dysarthric
speakers, LHUC-SAT was used (see connections (e) and (f) for
LHUC adaptation to the main architecture and visual subnet re-
spectively in Fig. 1). During training, supervised estimation
of the LHUC scaling factors was performed for each speaker.
During test adaptation, an unsupervised LHUC adaptation was
used, where the LHUC scaling factors were adapted.

3. Audio-visual Inversion
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Figure 2: Various AV inversion architectures investigated in this
paper. (a), (b), (c) are DNN based AV inversion models, (d) is
the LSTM based AV inversion model. The network inputs are
splicing windowed frames of acoustic features, while the output
is a single frame of visual features.

In order to address the missing visual modality issue, an audio-
visual inversion technique was employed. The objective of
audio-visual inversion is to learn the mapping between acoustic
and visual domain, hence a suitable inversion model is required.
In previous research, Taylor et al. [21] explored the deep neural
network (DNN) based AV inversion architectures, while Su et
al. [22] adopted the long short term memory (LSTM) network
with fully connected layers to train the AV inversion model. In
this paper, we used the widely available, out-of-domain AV nor-
mal speech data, the LRS2 dataset [24], and investigated both
inversion techniques, i.e. DNN and LSTM, to select a suitable
AV inversion model by evaluating the AVSR performance on
the LRS2 AV test set in comparison against a baseline AVSR
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system using the original visual features only. The generated
visual features were used in both AVSR system training and
evaluation stages.

Table 1: AVSR systems performance comparison (in WER) on
the LRS2 AV test set. The visual features used in the AVSR sys-
tems are original visual features and generated visual features
produced by the four investigated AV inversion systems.

AVSR WER%

original
visual features

generated visual features
DNN LSTM

(d)(a) (b) (c)
9.05 9.25 8.92 9.20 9.28

Various forms of AV inversion models are illustrated in Fig.
2. The first three (a), (b) and (c) adopted the feedforward DNN
structure with different number of hidden layers, while (d) used
additional LSTM layers following several fully connected lay-
ers. ReLU activation functions were applied to all models. The
AVSR performance using generated visual features of the above
four inversion models against that using original visual features
are shown in Table 1. This table demonstrates that the AVSR
systems using generated visual features from the four AV inver-
sion models have comparable WER performance compared to
that using original visual features. The DNN based AV inver-
sion model (b) in Fig. 2 was selected for the rest of the paper
with necessary cross adaptation being used considering its best
performance among the four inversion models.

4. Cross-domain Visual Feature Generation
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Figure 3: Cross-domain visual feature generation system ar-
chitecture. The left part is the MLAN network consisting of two
DNN components, while the DNN in the right is the AV inversion
model using the bottleneck features as the adapted “acoustic”
inputs from the second DNN component of the MLAN network.

The inversion systems (described in section 3) trained on the
LRS2 AV normal speech data cannot be directly applied to dis-
ordered speech given the large mismatch against normal speech.
This mismatch may lead the generated visual features unreli-
able to use for AVSR system development. There are multiple
solutions can be applied to handle such mismatch, e.g. domain-
adversarial neural networks (DANN) [28] or multi-level adap-
tive networks (MLAN) [29], which have been investigated by

previous work [22] on normal speech datasets. Following [22],
the MLAN based method was adopted to minimize the domain
mismatch between normal and disordered speech in this paper.

As shown in the left of Fig. 3, the MLAN network con-
sists of two DNN components, each with a bottleneck layer im-
mediately before the output layer. The training process of such
adaptive network is detailed as follows: the first-level DNN was
trained with the audio data from the in-domain UASpeech cor-
pus; the trained in-domain DNN was then used to produce bot-
tleneck features for the out-of-domain audio data of the LRS2
AV normal speech; the next step was to train the second-level
DNN using the out-of-domain LRS2 audio data concatenated
with the bottleneck features computed from the previous step.

In this MLAN network during training stage, the out-of-
domain LRS2 audio data was transformed to “UASpeech-like”
data, via the bottleneck features produced by the first-level in-
domain UASpeech audio data trained DNN. The UASpeech do-
main information inside the bottleneck features was removed
by the second-level DNN component of the MLAN network,
where the “UASpeech-like” LRS2 bottleneck features were re-
versed back to the LRS2 data domain. Then the bottleneck out-
puts of the second-level DNN component can be used as cross-
domain adapted “acoustic” features for the following AV inver-
sion model training (in the right of Fig. 3). When applying the
MLAN network, we feedforward the UASpeech data through
both components to generate “LRS2-like acoustic” features.

5. Experiments

5.1. Task Description and Experimental Setup

The UASpeech [16] is an isolated word recognition task con-
taining 16 dysarthric and 13 control speakers, where only 8
dysarthric speakers have AV parallel data. The data was split
into three blocks, B1, B2 and B3. The B1 and B3 of the 29
speakers (∼30.6h) were used for baseline ASR and AVSR sys-
tems’ training. The performance evaluation was conducted on
the B2 of the 16 dysarthric speakers (∼9h). The augmented
UASpeech audio data (∼99.5h) for addressing the data sparsity
issue were provided by the authors of [30].

The LRS2 dataset is one of the largest widely available AV
normal speech datasets [24]. The train+validation and test sets
of the LRS2 dataset were used for inversion model development
in this paper. The acoustic features are 40-dimension mfcc fea-
tures following [14]. The preprocessing step to obtain the orig-
inal visual features of LRS2 video data follows our previous
work [8] and the AVSR system description is detailed in [14].

In our ASR and AVSR experiments on UASpeech data, a 9-
frame context window was used. The acoustic features are 80-
dimension filter bank (FBK)+∆ features. The original visual
features were the same with that used in our previous work [8],
while the generated visual features were produced by the ap-
proach described in section 4. All the visual features used are 25
dimensions following our previous work [8]. In the main struc-
ture of both ASR and AVSR systems (in Fig. 1), the first six
hidden layers contain 2000 neurons each, followed by dropout
operations with a 20% dropout rate. The bottleneck dimension
of the intermediate five hidden layers is 200. The seventh hid-
den layer contains 100 neurons. All the systems were trained
by back-propagation based on RMSProp without pre-training.
The weight ratio λ of the multi-task learning was set as 0.5. A
uniform language model was used in decoding, following [31].
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Table 2: Comparison of the WER results produced by various ASR and AVSR systems investigated in this paper on the 16 UASpeech
dysarthric speakers test set. The dysarthric speakers are grouped by their intelligibility levels, which are “Very low”, “Low”, “Mild”
and “High”. Data Aug. is the abbreviation of data augmentation.

Systems
LHUC
SAT

Data
Aug.

WER%
Very low Low Mild High Average

1 audio-only 7 7 69.82 32.61 24.53 10.40 31.45
2 audio+original visual 7 7 69.70 32.59 24.35 9.67 31.14
3 audio+UA-syn visual 7 7 69.73 33.03 24.20 9.59 31.21
4 audio+LRS2-cross visual 7 7 67.45 31.53 23.23 10.28 30.38
5 audio-only 3 7 64.39 29.88 20.27 8.95 28.29
6 audio+original visual 3 7 63.80 29.99 20.35 8.66 28.11
7 audio+UA-syn visual 3 7 65.58 28.79 19.80 8.72 28.09
8 audio+LRS2-cross visual 3 7 63.65 29.32 19.45 9.20 27.92
9 audio-only 7 3 66.45 28.95 20.37 9.62 28.73
10 audio+LRS2-cross visual 7 3 66.01 29.22 20.59 9.67 28.76
11 audio-only 3 3 62.50 27.26 18.41 8.04 26.55
12 audio+LRS2-cross visual 3 3 61.34 27.90 18.29 9.22 26.84

5.2. In-domain AVSR
Prior to the proposed cross-domain visual feature generation
approach (we use “Xdomain-AV approach” for simplification
in the following), the in-domain UASpeech AV parallel data
trained AV inversion model was investigated in this paper. The
inversion model architecture is the same with the DNN based
model (b) in Fig. 2. The training of this in-domain inversion
model was based on the 8 dysarthric speakers’ AV parallel data.

The performance of three in-domain systems is compared
in this subsection (see Table 2, systems 1-3). System 1 is the
in-domain ASR baseline. System 2 is the AVSR baseline using
the UASpeech original visual features following our previous
work [8]. Zeros were concatenated with the acoustic features
for those speakers whose video data were missing. The AVSR
system 3 used the generated visual features derived from the
in-domain UASpeech AV inversion model for both training and
test data. Comparing the results of these three lines we observe
that no significant improvement can be obtained over the ASR
baseline using either original visual features or in-domain in-
version generated visual features.

5.3. Cross-domain Adapted AVSR
The system 4 in Table 2 is the AVSR system using the visual
features generated by the Xdomain-AV approach. Same as the
AVSR system 3, the generated visual features used in system 4
are applied to both training and test data. The line of system
4 indicates that the AVSR system using the generated visual
features produced by the Xdomain-AV approach consistently
outperforms systems 1-3 on the “Very low”, “Low” and “Mild”
dysarthric speaker groups, yet almost no improvement on the
“High” group. The average WER reduction of system 4 com-
pared to the ASR baseline is 1.07% absolute (3.4% relative).

LHUC based speaker adaptive training was further applied
to model the variability among dysarthric speakers (see systems
5-8 in Table 2). Comparing the results, the similar trend is still
observed. The Xdomain-AV AVSR system 8 produces the low-
est average WER among the systems 5-8, while having a con-
sistent WER reduction on the “Very low” and “Mild” groups.

In order to address the AV data sparsity issue, we acquired
∼99.5h augmented UASpeech audio data from [30]. Visual
features were generated for the augmented audio data using
our Xdomain-AV approach. Then the augmented audio data
concatenated with generated visual features were added to the

training set for systems 10,12. Consistent WER reductions on
the “Very low” group over audio-only systems 9,11 with data
augmentation were obtained using Xdomain-AV AVSR systems
with or without LHUC speaker adaptive training. No further
improvements could be obtained on other intelligibility levels.

5.4. Comparison with Previous Reported System
Table 3: A comparison between the best WER result in this pa-
per and published WER results on the 8 UASpeech dysarthric
speakers with audio-visual data available.

Systems Avg WER%
Sheffield-2015 SAT based ASR [32] 33.1

CUHK-2018 DNN ASR [33] 30.2
CUHK-2019 SD BGNN AVSR [8] 25.7
Xdomain-AV AVSR in this paper 22.1

We compare the best average WER result of the AVSR sys-
tem using the visual features generated by the Xdomain-AV ap-
proach with previously published best ASR and AVSR systems
available on the 8 UASpeech dysarthric speakers (see in Table
3). We can observe that our AVSR system using the generated
visual features produced by the Xdomain-AV approach achieves
the lowest WER and gives a 3.6% absolute (14% relative) WER
reduction compared with our previous work [8].

6. Conclusion
In this paper, we present the first work to explore cross-domain
visual feature generation approaches for audio-visual disor-
dered speech recognition. The experiments conducted indicate
that this method is useful for disordered speech recognition
where the audio-visual data is often very limited. Our future
research will focus on improving audio-visual data generation
and augmentation techniques.
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acoustic-to-articulatory inversion using ultrasound tongue imag-
ing,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1–8.

[21] S. Taylor, A. Kato, B. Milner, and I. Matthews, “Audio-to-visual
speech conversion using deep neural networks,” 2016.

[22] R. Su, X. Liu, L. Wang, and J. Yang, “Cross-domain deep visual
feature generation for mandarin audio–visual speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 28, pp. 185–197, 2019.

[23] H. Zhou, Y. Liu, Z. Liu, P. Luo, and X. Wang, “Talking face gener-
ation by adversarially disentangled audio-visual representation,”
in AAAI, vol. 33, 2019, pp. 9299–9306.

[24] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisser-
man, “Deep audio-visual speech recognition,” IEEE transactions
on pattern analysis and machine intelligence, 2018.

[25] P. Swietojanski, J. Li, and S. Renals, “Learning hidden unit contri-
butions for unsupervised acoustic model adaptation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 24, no. 8, pp. 1450–1463, 2016.

[26] R. Caruana, “Multitask learning,” Machine learning, vol. 28,
no. 1, pp. 41–75, 1997.

[27] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., “The HTK book,”
Cambridge university engineering department, vol. 3, p. 75, 2006.

[28] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-
adversarial training of neural networks,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016.

[29] P. Bell, M. Gales, P. Lanchantin, X. Liu, Y. Long, S. Renals,
P. Swietojanski, and P. C. Woodland, “Transcription of multi-
genre media archives using out-of-domain data,” in 2012 IEEE
Spoken Language Technology Workshop (SLT). IEEE, 2012, pp.
324–329.

[30] G. Mengzhe, X. Xurong, L. Shansong, Y. Jianwei, H. Shoukang,
L. Xunying, and M. Helen, “Investigation of data augmenta-
tion techniques for disordered speech recognition,” in interspeech
2020.

[31] H. Christensen, S. Cunningham, C. Fox, P. Green, and T. Hain,
“A comparative study of adaptive, automatic recognition of dis-
ordered speech,” in Thirteenth Annual Conference of the Interna-
tional Speech Communication Association, 2012.

[32] S. Sehgal and S. Cunningham, “Model adaptation and adaptive
training for the recognition of dysarthric speech,” in Proceedings
of SLPAT 2015: 6th Workshop on Speech and Language Process-
ing for Assistive Technologies, 2015, pp. 65–71.

[33] J. Yu, X. Xie, S. Liu, S. Hu, M. W. Lam, X. Wu, K. H. Wong,
X. Liu, and H. Meng, “Development of the CUHK Dysarthric
Speech Recognition System for the UA Speech Corpus,” in Inter-
speech, 2018, pp. 2938–2942.

715


