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Abstract
Measuring the performance of automatic speech recognition
(ASR) systems requires manually transcribed data in order
to compute the word error rate (WER), which is often time-
consuming and expensive. In this paper, we continue our ef-
fort in estimating WER using acoustic, lexical and phonotac-
tic features. Our novel approach to estimate the WER uses a
multistream end-to-end architecture. We report results for sys-
tems using internal speech decoder features (glass-box), sys-
tems without speech decoder features (black-box), and for sys-
tems without having access to the ASR system (no-box). The
no-box system learns joint acoustic-lexical representation from
phoneme recognition results along with MFCC acoustic fea-
tures to estimate WER. Considering WER per sentence, our
no-box system achieves 0.56 Pearson correlation with the refer-
ence evaluation and 0.24 root mean square error (RMSE) across
1,400 sentences. The estimated overall WER by e-WER2 is
30.9% for a three hours test set, while the WER computed us-
ing the reference transcriptions was 28.5%.
Index Terms: word error rate estimation. multistream, end-to-
end

1. Introduction
Automatic Speech Recognition (ASR) has accomplished great
success, primarily due to advances in the end-to-end neural net-
works and the modular hybrid HMM-DNN architectures. As a
result, the quality of ASR has improved dramatically, leading
to growing adoption in personal assistant devices, smart phones
and broadcast media monitoring. Despite this progress, ASR
performance is still closely tied to how well the training data
matches the test conditions, such as the variability of different
microphones or background noises. While researchers in [1, 2]
discussed achieving human parity on conversational speech, re-
cent competitions in ASR [3, 4] reported considerably poorer
results due to dialectal speech, simultaneous recordings from
multiple microphone arrays, and background noise.

Word Error Rate (WER) is the standard approach to eval-
uate the performance of a large vocabulary continuous speech
recognition (LVCSR) system. To obtain a reliable estimate of
the WER, at least two hours of manually transcribed test data is
typically required – a time-consuming and expensive process.
It is, thus, of interest to develop techniques which can automat-
ically estimate the quality of the ASR.

Such quality estimation techniques have been extensively
investigated for machine translation [5, 6, 7], with extensions
to spoken language translation [8, 9]. Although there is a long
history of exploring word-level confidence measures for speech
recognition [10, 11, 12, 13, 14, 15, 16, 17], there has been
fewer attempts on the direct estimation of speech recognition
errors [18, 19].

Previously, we proposed e-WER [20], a method to estimate
the total number of errors per utterance ( ˆERR) and the to-
tal number of words in the reference (N̂ ) as shown in section
2.1. However, that work assumed having access to a graphemic
speech recognition for the predicted language and being able to
see the ASR transcription . In this paper, we extend this work
by deploying an end-to-end multistream architecture to predict
the WER per sentence using language-independent phonotac-
tic features. Our novel system is able to learn acoustic-lexical
embeddings to estimate the error rate directly without having
access to the ASR results nor the ASR system – this is our “no-
box” WER estimation method, e-WER21.

2. Related Work
Several studies have explored estimating the WER in LVCSR.
TranscRater [21, 22, 23, 24, 25] estimated the WER per utter-
ance using a large set of extracted features (not including ASR
decoder features) to train a regression model (e.g., extremely
randomised trees). This work did not report WER estimates for
complete recordings or test sets, although it is possible that this
could be done using utterance length estimates.

Fan et al [26] proposed a novel neural zero-inflated model
to predict the WER of the ASR result without transcripts. They
deployed a bidirectional transformer language model condi-
tional on speech features (speechBERT). They adopted the pre-
training strategy of token level mask language modeling for
speech-BERT as well, and further fine-tune with zero-inflated
layer for the mixture of discrete and continuous outputs. They
reported results in WER prediction using the metrics of Pearson
correlation and mean absolute error (MAE).

Vyas et al [27] used dropout in a novel framework to model
uncertainty in prediction hypotheses. They systematically ex-
ploited this uncertainty in the output of the acoustic models
through the Monte Carlo sampling of the neural networks using
dropout at the test time. They were able to estimate the WER
without the need for explicit transcription. However, the models
must have access to the ASR models to model the uncertainty
in the prediction.

2.1. e-WER

In this section, we give a brief overview of our previous e-
WER framework [20]. We used two speech recognition sys-
tems; a word-based LVCSR system and a grapheme-sequence
based system. Following [28], we assumed that when two cor-
responding ASR systems disagree on a sentence or part of a
sentence, there is a pattern of the error to be learned. The e-
WER architecture also benefits from utterance-based LVCSR
internal decoder features. The e-WER approach is looking for
the overall error pattern and not particularly concerned with the

1https://github.com/qcri/e-wer
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error. We directly estimated the numerator in the WER, which
is the summation of insertion, deletion and substitution errors,
which we refer to as ˆERR, the estimated total number of er-
rors per utterance. We also directly estimated N̂ , an estimate of
the total number of words in the reference as shown in 1. The
e-WER predicts two values for each utterance: ˆERR and N̂ .
More details about the e-WER can be found here [20]. We use
the e-WER system as a baseline reference for this paper.

e-WER =
ˆERR

N̂
× 100% (1)

3. e-WER2 Framework
In this paper, we develop models to predict the WER per sen-
tence rather than ˆERR or N̂ . WER per sentence can be scaled
by the corresponding sentence duration to calculate the overall
e-WER2.

3.1. Features

We combine features from the word-based LVCSR system with
features from the phoneme-based system. We split the studied
features into the following four groups:

• L: lexical features – the word sequence extracted from
the LVCSR;

• P: phoneme features – the phonotactic sequence ex-
tracted from the phoneme recognition, see 3.1.1;

• D: decoder features – total frame count, average log-
likelihood, total acoustic model likelihood, and total lan-
guage model likelihood; and

• A: acoustics features – the MFCC features are extracted
by segmenting each utterance into 25 ms long frames
with a 10 ms shift. A Hamming window is applied and
the FFT with 512 points is computed. Then, we compute
the logarithmic power of 26 Mel-frequency filter-banks
over a range from 0 to 8 kHz. Finally, a discrete co-
sine transform (DCT) is applied to extract the first 13
MFCCs.

3.1.1. Phonotatic features

In our phonotactic systems, we use Arabic and non-Arabic
phone recognizers. For the Arabic recogniser, the HMM-LSTM
based acoustic model is trained using 1,200 hours of training
data from the MGB-2 datasets [29] . In addition to the Arabic
recognizer, we used a phone recognizer from a toolkit devel-
oped by Brno University of Technology [30], trained on Hun-
garian, but empirically observed to be applicable to multiple
languages. This phone recogniser is based on a long tempo-
ral context, and has been widely used to discriminate between
various languages and dialects. The intuition for using this sys-
tem is that a robust phone recogniser is capable of extracting an
accurate phonotactic pattern for the recognised language. We
benchmarked Hungarian results against Arabic and the results
were similar, thus we decided to deploy this phone recognition
system for the multilingual extraction of phonotactic features.

3.2. Modelling

In this study, we consider four different streams; numerical (D),
lexical (L), phonotactic (P) and finally acoustic features (A).

3.2.1. Numerical modelling: (D)

We deploy a feed-forward neural network for the numerical fea-
tures with fully-connected hidden layers (ReLU activation func-
tion), with 64 neurons in the first layer and 32 neurons in the
second layer followed by a softmax layer with mean squared
error loss function. We use dropout rate between layers 0.2,
minibatch size of 32 and the number of epochs was up to 50
with an early stopping criterion.

3.2.2. Acoustic modelling: (A)

We employed deep CNN models, each with five layers where
four of them are CNN layers. The same dropout rate, batch size
and number of epochs was used as above. Table 1 shows details
of the deployed models. More details about this model can be
found here [31].

Table 1: The acoustic features deep CNN architecture.

Layer Type Details
1 Conv 500 filters + Relu + Stride=1 + ker-

nal wdith=5
2 Conv 500 filters + Relu + Stride=2 + ker-

nal wdith=7
3 Conv 500 filters + Relu + Stride=2 + ker-

nal wdith=1
4 Conv 500 filters + Relu + Stride=1 + ker-

nal wdith=1

5 MaxPool1D Global

3.2.3. Textual modelling: (L and P)

We use CNN models for phoneme and text processing. The in-
put word sequences are trimmed to a maximum of 100 words
for the long sentences, and we padded shorter sentences with
zeros. This was followed by an embedding layer of a dimen-
sion of 256. Followed by three convolutional layers in parallel
to each other with the same number of filters: 512 each, and
ReLU activation function. The filters’ sizes were different for
each convolution layer: 3, 4 and 5, respectively. The three-
convolutional layers were then merged into a single tensor. The
same CNN is used for the phoneme sequence. However, a max-
imum of 200 dimensions were used for phoneme-based CNN.
More details about this model can be found here [32].

3.2.4. Multistream system:

We combine the four streams: lexical, phonotactic, acoustics
and numerical features into a single end-to-end network to esti-
mate word error rate directly. We jointly train the multistream
network and their final hidden layers are concatenated to obtain
a joint feature space in which another fully connected layer with
32 neurons and Relu activation function to estimate the WER
directly. Figure 1 shows the architecture of the multistream ap-
proach developed in this paper.

4. Speech Recognition System
The LVCSR system is trained using the second Multi-Genre
Broadcast challenge data, MGB-2 [33]. The data comprised
recorded programs over 10 years of the Aljazeera Arabic TV
channel with a total of 1,200 hours of audio that could be used
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Figure 1: Multistream model architecture of e-WER2. Based on a combination of four features: decoder, acoustics, textual and
phonotactics features.

Table 2: Data used for acoustic model training, development
and evaluation

Type Hours Programs #segments

Training 1,200h 2,214 370K
Development 10h 17 5,800
Evaluation 10h 17 5,600

Table 3: In-domain data refers to the training transcripts and
Background data refers to the extra Arabic language modeling
text provided for the challenge

Type Tokens Vocab

In-domain 8M 200k
Background 130M 1M

for the acoustic model (AM). The original transcription has no
timing information and is not verbatim, having been generated
as closed captions for viewers; the quality of the transcription
varies significantly. We, therefore, use lightly supervised align-
ment algorithms in order to recover the timing information for
each word.

For language modelling, we use 130M words crawled from
the Aljazeera Arabic website from the period 2000–2011 (back-
ground text), as provided for the MGB-2 challenge. We have
used the provided Buckwalter2 format for the transcription
as well as for the background text.LM experiments used a
grapheme lexicon of 1.3M words. The grapheme based lexicon
has a 1:1 word-to-grapheme mapping, which means the vocab-
ulary size is the same as the lexicon size. More details about the
data can be found in tables 2 and 3.
Acoustic modelling: There are many architectures used for the
hybrid HMM neural acoustic modeling, with a recent trend in

2Buckwalter is a one-to-one mapping allowing non-Arabic speakers
to understand Arabic scripts, and it is also left-to-right, making it easy
to render on most devices.

ASR modeling combining different types of layers. Peddinti
et al [34] explored using dropout to improve generalisation in
DNN training. They reported that combining a time delay neu-
ral network (TDNN) with long short term memory (LSTM) lay-
ers outperformed bidirectional LSTM (BLSTM) acoustic mod-
elling. We adopt this architecture. The TDNN-LSTM model
consists of 5 hidden layers, each layer containing 1,024 hid-
den units. We use purely sequence trained neural networks us-
ing lattice-free maximum mutual information (LF-MMI) [35].
Acoustic models are built using Kaldi ASR toolkit [36].

Language modelling: We train two n-gram LMs: a big four-
gram LM (bLM4), trained using the spoken transcripts and the
background text as shown in table 3; and a smaller four-gram
LM (sLM4) obtained by pruning bLM4 using pocolm3. The
small LM is used for first-pass acoustic decoding to generate
lattices. These lattices are then rescored using the bLM4.

5. Data

In our study, we use the same data as [20] to benchmark our
results. The e-WER2 training and development data sets are the
same as the Arabic MGB-2 development and evaluation sets
[33], which is comprised of audio extracted from Al-Jazeera
Arabic TV programs recorded by Brightcove in the last months
of 2015. They each comprise 10 hours of audio that were not
used in the MGB-2 training data. (Other episodes of the same
program may have been included in the training set). To test
whether our approach generalises to test sets from a different
source, and not tuned to the MGB-2 data set, we validate our
results on another three hours test set collected by BBC Media
Monitoring from different broadcasters during November 2016,
as part of the SUMMA project 4. The SUMMA data is referred
to as the test set. All data were manually segmented and la-
beled. Table 4 shows more details about the data used for these
experiments.

3https://github.com/danpovey/pocolm
4http://summa-project.eu
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Table 4: Analysis of the train, dev and test data.

Train Dev Test
# of programs in corpus 17 17 24
Utterances 5.6K 5.8K 1.4K
Duration (in hours) 10.2 9.9 3.2
2-20 words sentences 95% 96% 96%
Word count (N ) 69K 75K 20K
ASR word count (hyp) 60K 58K 18K
WER 33.1% 42.6% 28.5%
Sentence Error Rate (SER) 89.1% 88.7% 86.0%
Total INS 1.8K 1.9K 130
Total DEL 10.2K 19.1K 2.6K
Total SUB 10.8K 11.1K 2.9K
ERR count (ERR) 22.8K 32.1K 5.7K

Table 5: Pearson correleation and RMSE report per system.
The overall WER reported in %, the reference overall WER is
28.5%

WER Per Sentence Overall WER
Pearson RMSE e-WER

Glass-box baseline 0.8 0.17 26.5
Black-box baseline 0.66 0.35 28.6

A 0.79 0.2 28.0
B e-WER2 glass-box 0.81 0.18 27.7

C 0.68 0.22 35.3
D e-WER2 black-box 0.72 0.2 22.4

E 0.11 0.28 46.1
F e-WER2 no-box 0.56 0.24 30.9

6. Experiments and discussions
We train our end-to-end system to estimate WER per sentence
as regression problem. The hyper-parameters for the system
were tuned using two evaluation metrices: Pearson correlation
and root mean square error (RMSE) for the development set and
results are reported for the test set. In our feature ablation study,
we evaluated the six following systems:

• A: Decoder features + MFCC + lexical features
• B: A + phonotactic features
• C: MFCC + lexical features
• D: C + phonotactic features
• E : MFCC
• F : E + phonotactic features
The first two rows in table 5 show the glass-box and black-

box results from our baseline system; the e-WER where we
combined word-based and grapheme-based ASR results for the
same sentence. system A shows our first multistream archi-
tecture which combines acoustics, lexical and decoder features.
System (B e-WER2 glass-box) achieves Pearson correlation
of 0.81, which outperforms the glass-box in e-WER with no
need to run grapheme based speech recognition for the same
language. System C is trained using the lexical and acoustics
features only. System (D e-WER2 black-box) achieves Pear-
son correlation of 0.68, which outperforms the e-WER black-
box reference systems. At this stage, we are confident that our
multistream system is capable of learning a joint representation
for acoustics and linguistic (textual and phonotactic) features to
estimate the WER.

Our experiments show that the proposed multistream ar-
chitecture can estimate the WER efficiently without requiring
graphemic recognition. Fan et al [26] estimated WER without
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Figure 2: Test set cumulative WER over all sentences
X-axis is duration in hours and Y-axis is WER in %.

the requiring explicit transcriptions, but did require access to the
acoustic models. Here, we ask; Can we estimate the WER with-
out having access to neither the transcript nor the speech recog-
nition system? In our attempt to answer this, we build system E
in table 5 which uses only acoustic features. Clearly, the system
is not capable of learning any pattern given that the MFCC fea-
tures. When combined with phoneme recognition output (F)
we see a large improvement in Pearson correlation by combin-
ing acoustic and phonotactic features, still without access to the
ASR system.

To further visualise these results, figure 2 plots the cumu-
lative WER, glass-box, black-box and no-box in the e-WER2
framework, across the three hours test set. The large difference
during the first 100 utterances arises owing to the glass-box and
black-box systems in the e-WER2 framework are capable of
better estimation with fewer data points. It is worth to mention
that when we swap train and dev, the results are similar.

7. Conclusions

This paper continues our effort in predicting speech recogni-
tion WER without requiring a gold-standard reference tran-
scription. We presented an end-to-end multistream based re-
gression model to predict the WER per sentence. Our approach
benefits from combining word-based and phoneme-based ASR
results, in addition to the MFCCs for the same sentence. Our
experiments indicate that this approach can effectively estimate
WER per sentence and we have aggregated the estimated re-
sults to predict WER for complete test sets without the need for
a reference transcription. We also introduced a “no-box” WER
estimation approach (e-WER2) which does not need to have ac-
cess to the ASR system. A potential limitation of this work
is the restriction to only one language, so for future work, we
shall continue our investigation to estimate WER across differ-
ent languages and multilingual ASR systems. We also plan to
use e-WER for lattice n-best ranking for second pass rescoring.

Acknowledgements: This work was partially supported by EU
H2020 project “European Language Grid” (grant agreement ID:
825627).

619



8. References
[1] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, and G. Zweig, “Achieving human parity in conversational
speech recognition,” arXiv preprint arXiv:1610.05256, 2016.

[2] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas,
D. Dimitriadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L.
Lim, B. Roomi, and P. Hall, “English conversational telephone
speech recognition by humans and machines,” arXiv preprint
arXiv:1703.02136, 2017.

[3] S. Watanabe, M. Mandel, J. Barker, and E. Vincent, “Chime-6
challenge: Tackling multispeaker speech recognition for unseg-
mented recordings,” arXiv preprint arXiv:2004.09249, 2020.

[4] A. Ali, S. Vogel, and S. Renals, “Speech Recognition Challenge
in the Wild: Arabic MGB-3,” in ASRU, 2017.

[5] K. Fan, J. Wang, B. Li, F. Zhou, B. Chen, and L. Si, “Bilingual ex-
pert can find translation errors,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, 2019, pp. 6367–6374.

[6] M. Yang, X. Hu, H. Xiong, J. Wang, Y. Jiaermuhamaiti, Z. He,
W. Luo, and S. Huang, “Ccmt 2019 machine translation eval-
uation report,” in China Conference on Machine Translation.
Springer, 2019, pp. 105–128.

[7] E. Fonseca, L. Yankovskaya, A. F. Martins, M. Fishel, and C. Fe-
dermann, “Findings of the WMT 2019 shared tasks on quality
estimation,” in Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2), 2019, pp.
1–10.

[8] R. W. Ng, K. Shah, L. Specia, and T. Hain, “A study on the stabil-
ity and effectiveness of features in quality estimation for spoken
language translation,” in Sixteenth Annual Conference of the In-
ternational Speech Communication Association, 2015.

[9] ——, “Groupwise learning for ASR k-best list reranking in spo-
ken language translation,” in ICASSP, 2016.

[10] G. Evermann and P. Woodland, “Posterior probability decoding,
confidence estimation and system combination,” in Proc. Speech
Transcription Workshop, 2000.

[11] S. Cox and S. Dasmahapatra, “High-level approaches to confi-
dence estimation in speech recognition,” IEEE Transactions on
Speech and Audio processing, 2002.

[12] H. Jiang, “Confidence measures for speech recognition: A sur-
vey,” Speech Communication, 2005.

[13] M. S. Seigel, P. C. Woodland et al., “Combining information
sources for confidence estimation with CRF models.” in Inter-
speech, 2011.

[14] P.-S. Huang, K. Kumar, C. Liu, Y. Gong, and L. Deng, “Predict-
ing speech recognition confidence using deep learning with word
identity and score features,” in ICASSP, 2013.

[15] K. Kalgaonkar, C. Liu, Y. Gong, and K. Yao, “Estimating confi-
dence scores on ASR results using recurrent neural networks,” in
ICASSP, 2015.

[16] M. A. Del-Agua, A. Gimenez, A. Sanchis, J. Civera, and A. Juan,
“Speaker-adapted confidence measures for ASR using deep bidi-
rectional recurrent neural networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 26, no. 7, pp.
1198–1206, 2018.

[17] P. Swarup, R. Maas, S. Garimella, S. H. Mallidi, and B. Hoffmeis-
ter, “Improving ASR confidence scores for Alexa using acoustic
and hypothesis embeddings,” in INTERSPEECH, 2019.

[18] M. S. Seigel and P. C. Woodland, “Detecting deletions in ASR
output,” in ICASSP. IEEE, 2014.

[19] E. Simonnet, S. Ghannay, N. Camelin, Y. Estève, and R. De Mori,
“ASR error management for improving spoken language under-
standing,” arXiv preprint arXiv:1705.09515, 2017.

[20] A. Ali and S. Renals, “Word error rate estimation for speech
recognition: e-WER,” in ACL, 2018.

[21] M. Negri, M. Turchi, J. G. de Souza, and D. Falavigna, “Quality
estimation for automatic speech recognition.” in COLING, 2014.

[22] J. G. de Souza, H. Zamani, M. Negri, M. Turchi, and D. Falavi-
gna, “Multitask learning for adaptive quality estimation of auto-
matically transcribed utterances.” in NAACL, 2015.

[23] S. Jalalvand and D. Falavigna, “Stacked auto-encoder for ASR er-
ror detection and word error rate prediction,” in INTERSPEECH,
2015.

[24] S. Jalalvand, D. Falavigna, M. Matassoni, P. Svaizer, and
M. Omologo, “Boosted acoustic model learning and hypotheses
rescoring on the Chime-3 task,” in ASRU, 2015.

[25] S. Jalalvand, M. Negri, F. Daniele, and M. Turchi, “Driving rover
with segment-based ASR quality estimation,” in ACL, 2015.

[26] K. Fan, J. Wang, B. Li, B. Chen, and N. Ge, “Neural zero-inflated
quality estimation model for automatic speech recognition sys-
tem,” arXiv preprint arXiv:1910.01289, 2019.

[27] A. Vyas, P. Dighe, S. Tong, and H. Bourlard, “Analyzing uncer-
tainties in speech recognition using dropout,” in ICASSP, 2019.

[28] Y.-C. Tam, Y. Lei, J. Zheng, and W. Wang, “ASR error detection
using recurrent neural network language model and complemen-
tary ASR,” in ICASSP, 2014.

[29] M. Najafian, S. Khurana, S. Shan, A. Ali, and J. Glass, “Exploit-
ing convolutional neural networks for phonotactic based dialect
identification,” in ICASSP. IEEE, 2018.

[30] P. Matejka, P. Schwarz, J. Cernockỳ, and P. Chytil, “Phonotactic
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