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Abstract
In this paper, we propose two novel regularization-based
speaker adaptive training approaches for connectionist temporal
classification (CTC) based speech recognition. The first method
is center loss (CL) regularization, which is used to penalize the
distances between the embeddings of different speakers and the
only center. The second method is speaker variance loss (SVL)
regularization in which we directly minimize the speaker in-
terclass variance during model training. Both methods achieve
the purpose of training an adaptive model on the fly by adding
regularization terms to the training loss function. Our experi-
ment on the AISHELL-1 Mandarin recognition task shows that
both methods are effective at adapting the CTC model with-
out requiring any specific fine-tuning or additional complexity,
achieving character error rate improvements of up to 8.1% and
8.6% over the speaker independent (SI) model, respectively.

Index Terms: speaker adaptive training, regularization, speech
recognition, connectionist temporal classification

1. Introduction
Mismatches between training and testing conditions are a com-
mon problem in modern pattern recognition systems. It is par-
ticularly critical in perceptual sequence learning tasks such as
automatic speech recognition (ASR) and speech emotion recog-
nition (SER). For example, the performance of deep neural
network (DNN) based ASR [1, 2] systems experience mis-
matches between training and testing conditions, which are
caused by the different characteristics of acoustic variability
such as speakers, channels and environmental noises. Adap-
tation techniques to transform a model to match the testing con-
dition or augment the inputs to match a model have been inves-
tigated. In ASR, speaker adaptation (SA) techniques are used
to minimize the mismatch between the training and testing con-
ditions due to the speaker variability.

Speaker adaptation techniques for DNN based ASR can
be categorized into two broad approaches: feature space and
model space adaptation. In feature space adaptation, the tradi-
tional technique is to transform the acoustic features to a nor-
malized space and then the adapted features are used to train
the acoustic model. The maximum likelihood linear regres-
sion (MLLR) and its feature-space variant (fMLLR) [3, 4] are
two of the most widely used methods. For a deep neural net-
work (DNN) based acoustic model, another effective method is
to provide the network with auxiliary features that characterize
speaker information to perform adaptation such as the i-vector
[5, 6, 7, 8] and speaker code [9, 10]. In model space adapta-
tion, speaker dependent (SD) parameters are estimated from a
trained speaker independent (SI) model using additional adap-
tation data. The DNN Adaptation techniques can also be cate-
gorized into two broad approaches: regularized adaptation and
subspace or subset adaptation. For model adaption, a straight-

forward idea is to retrain all the SI model parameters. To avoid
overfitting, regularization approaches such as L2 regulariza-
tion using a weight decay [11], the Kullback-Leibler divergence
(KLD) [12] and adversarial multitask learning (MTL) [13] have
been proposed. There are also many approaches that have been
proposed in which small subsets of the network parameters are
adapted [14, 15, 16].Linear transformations, which augment the
SI network with certain speaker-specific linear layer(s), includ-
ing linear input network (LIN) [17, 18], linear hidden network
(LHN) [19] and linear output network (LOH) [18], were investi-
gated. Furthermore, parameterized hidden activation functions
have also been widely explored [20, 21, 22] and have achieved
good performances.

Recently, researchers began training adaptive models on the
fly instead of estimating the adaptive parameters from a well-
trained SI model [23, 24]. In such approaches, SD auxiliary net-
works are adopted to improve adaptive training and are jointly
optimized with the main network. These methods greatly sim-
plify model adaptation by using only one-pass training and not
requiring additional adaptation data.

Although the methods using SD auxiliary networks [23, 24]
make adaptive training easier, they usually add an extra burden
to the acoustic model. On the other hand, the regularization-
based adaptation techniques in [11, 12, 13] do not require ad-
ditional processing. Inspired by the work mentioned above,
we integrate the regularization approaches into adaptive train-
ing and propose two novel regularization-based speaker adap-
tive training methods. The first method is center loss (CL) [25]
regularization, where the center loss is used to penalize the dis-
tances between the embeddings of different speakers and the
only center of all speaker classes. For the second method, we
propose a novel regular loss function called the speaker vari-
ance loss (SVL). We directly minimize the speaker interclass
variance during model training by using SVL regularization.

The essential idea of both proposed methods is to adapt the
speaker variability by encouraging speaker interclass compact-
ness, which measures the degree of mismatches. Both methods
achieve the purpose of training an adaptive model on the fly by
adding regularization terms to the training loss function. More
importantly, they hardly add any complexity to the model: the
CL only increases the number of parameters of one vector while
the SVL does not increase any number of parameters. Con-
sidering that there is limited work on speaker adaptive training
for the connectionist temporal classification (CTC) [26] model,
we applied the proposed methods to CTC-based ASR in this
paper. The experiments are conducted on the public Chinese
dataset AISHELL-1 [27]. The experimental results show that,
both methods are effective at speaker adaptation without requir-
ing any specific fine-tuning or additional complexity, achieving
up to 8.1% and 8.6% character error rate improvements over the
speaker independent (SI) model, respectively.

The rest of this paper is organized as follows. Section 2
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gives a brief description of the related work. We introduce the
adaptive training approaches we proposed in Section 3. Section
4 shows our experimental setup and other details, including the
experimental results. Finally, the discussion and conclusion are
presented in Section 5.

2. Relation to prior work
The center loss (CL) [25] was first proposed to learn discrimi-
native features for Face Recognition (FR) tasks. CL encourages
intraclass compactness by penalizing the distances between the
features of samples and their centers. To avoid the deeply
learned features and centers degrading to zeros, researchers
adopted the joint supervision of the softmax loss and CL to
train neural networks. Via joint supervision, the CL pulls the
features in the same class closer to their class center, and the
softmax cross-entropy loss separates the features from different
categories. It has performed remarkably on various benchmark
datasets for face recognition. Since the CL enjoys the same re-
quirement as the softmax loss and needs no complex recombi-
nation of the training samples, it can be easily extended to other
tasks. Variants of these methods have also been successfully
adopted in Speaker Recognition (SR) tasks [28, 29], automatic
speech recognition (ASR) [30] tasks and speech emotion recog-
nition (SER) [31] tasks.

Intuitively, the center loss function pulls the deep features
of the same class to their corresponding centers. The purpose
of speaker adaptive training in ASR is to normalize the speaker
variability between the training and testing conditions. In other
words, we want the deep features to contain as little speaker
information as possible. The center loss must be tailored for
the adaptive training; therefore, we use the center loss in this
work to penalize the distances between different embeddings of
speakers and the only center of all speaker classes. By mini-
mizing such a center loss, different speaker categories approach
the same center to achieve the purpose of normalizing speaker
variability.

The purpose of adaptive training is to reduce the inters-
peaker variability of speech. In addition to the proposed center
loss function, we further propose a novel loss function called
the speaker variance loss (SVL), which directly minimizes the
speaker interclass variance. Similar to the center loss, we use
the SVL as a regulation term and adopt the joint supervision
of the conventional CTC loss and the proposed SVL in model
training. In this way, speaker interclass variance can be normal-
ized as much as possible on the premise of ensuring the accurate
classification of acoustic features.

Different from previous regularization-based speaker adap-
tation approaches [11, 12, 13], our proposed methods train the
adaptive model on the fly by adding regularization terms to the
training loss function. Therefore, we do not need any additional
adaptation data to fine-tune the model parameters. This simpli-
fies adaptive training while introducing little additional model
complexity.

3. Proposed methods
An illustration of the proposed regularization-based speaker
adaptation approach is shown in figure 1. We directly add the
regular loss while training the acoustic model instead of using it
to prevent overfitting when estimating speaker dependent (SD)
parameters. The regularization encourages the speaker inter-
class compactness while the CTC loss encourages the separa-
bility of features. Consequently, the joint supervision of these
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Figure 1: Illustration of the proposed unsupervised
regularization-based speaker adaptive training approach.
The scalar λ or γ is used for balancing the CTC loss and the
regular loss.

two loss function minimizes the speaker variability while keep-
ing the features of different classes separable. More details are
discussed as follows.

3.1. Center Loss for adaptive training

Assuming that the training set contains a total of k speakers, we
define the center loss function for adaptive training as follows:

Lc =

k∑

i=1

||Si −C||22 (1)

where Si denotes the deep features of speaker i, C denotes the
center of all speaker classes.

When we minimize the center loss, different speaker cat-
egories approach the same center, which is beneficial for the
final sequence classification. As mentioned in [22], the center
should be updated as the deep features change. In other words,
we need to use the entire training set in each iteration, which is
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inefficient and even impractical. Therefore, we make the neces-
sary modification. Instead of updating the center with respect to
the entire training set, we perform the update based on the mini-
batch. Under this modification, the k in eq. (1) is redefined as
the number of speaker classes within a mini-batch.

Then, the representation of speaker i, Si, can be easily cal-
culated as follows:

Si =
1∑

t 1[st = i]

∑

t

1[st = i]ht (2)

where st denotes the speaker label of the tth sample in the mini-
batch, and 1[.] is the indicator function that evaluates to 1 when
its argument holds. ht denotes the hidden activation of the sec-
ond last layer.

We adopt the joint supervision of the classification loss
and center loss in order to minimize the speaker variability as
much as possible while retaining accurate sequence classifica-
tion. The formulation is given as follows:

L=Lctc + λLc (3)

where the scalar λ is used for balancing the two loss functions.
Lctc is the CTC loss function given by the following:

Lctc = −
∑

(x,z)

ln(p(z|x)) (4)

where (x, z) are the training data pairs.

3.2. Speaker Variance Loss for adaptive training

According to the intuition behind the center loss, we propose
a novel speaker variance loss (SVL) for speaker adaptation,
which directly minimizes the speaker interclass variance. The
formula is given as follows:

Lsv = ||var(S1, ..., Si, ...Sk)||22 (5)

where var(S1, ..., Si, ...Sk) denotes the interclass variance of
the k speakers. We then take into account the modification to
update the mini-batch. The interclass variance can be calculated
as follows:

σ2
s =

1

k

∑

i

(Si − μs)
2

(6)

where μs is the mean of the k speaker classes. It is given by the
following:

μs =
1

k

∑

i

Si (7)

Then, the joint supervision of the CTC loss and SVL can be
given as follows:

L=Lctc + γLsv (8)

where γ is the balance factor.
In fact, the SVL effectively characterizes the interclass vari-

ations of speakers. Compared with the modified center loss,
the SVL targets more directly on the learning objective of the
speaker interclass compactness, which is very beneficial for re-
ducing speaker variability. More importantly, the SVL does not
introduce any learnable parameters. In this way, it may avoid
the local optimization caused by the random initialization of
parameters to a certain extent.

Note that both proposed loss functions only take the hid-
den activation and do not need a complex recombination of the
training samples. Therefore, their application for neural net-
works is more flexible. For example, the hidden activation used

to calculate the speaker representation can be taken from any
certain layer. In addition, each layer can add the regular loss
direction to achieve layer-wise speaker adaptation. These will
be discussed in detail in the experimental part.

4. Experiments
4.1. Dataset

We evaluate the proposed methods on an open-source Mandarin
speech corpus AISHELL-1 [23]. All the speech files are sam-
pled at 16K Hz with 16 bits. AISHELL-1 has 7,176 utterances
from 20 speakers for evaluation (10 hours). We use 120,098 ut-
terances from 340 speakers (150 hours) as the training set and
14,326 utterances from 40 speakers (20 hours) as the develop-
ment set. The speakers of the training, development and test
sets do not overlap.

4.2. Model setup

The PyTorch toolkit [32] is used in our model training process.
All the model parameters are randomly initialized and updated
by Adam [33]. The acoustic feature is 108-dimensional filter-
bank features (36 filter-bank features, delta coefficients, and
delta-delta coefficients) with mean and variance normalization.
According to the statistical information of the transcripts, there
are 4294 Chinese characters in the training set. Along with the
added blanks, 4295 modeling units are used in the grapheme-
based CTC system. The trigram language model is used in the
decoding procedure.

The network is trained to minimize the CTC loss function
with an initial learning rate of 0.0001. The development set is
used for learning rate scheduling and early stopping. We start
to halve the learning rate when the relative improvement falls
below 0.004, and the training ends if the relative improvement
is lower than 0.0005, which is usually approximately 13 epochs.

4.3. Network architecture

The acoustic modeling adopts a combination of CNNs and
LSTM based RNNs for good performance as well as high ef-
ficiency. For this baseline, the bottom two layers are 2D con-
volution layers with 64 and 256 output channels. Each convo-
lution layer is followed by a max-pooling layer with a stride of
2 in the time dimension to finally down sample an utterance to
a quarter of its original length. After the CNN layers, there are
three LSTM layers, each of which is a bidirectional LSTM layer
with 512 units. We also use a dropout rate of 0.3 for the LSTM
layers to avoid overfitting.

4.4. Results

We first investigate the sensitiveness of the balance factor of
the standard CL regularization and SVL regularization in which
only the last LSTM layer is adapted.

Table 1 shows the character error rate (CER) of the adap-
tive model with CL regularization and SVL regularization un-
der different hyper parameters λ and γ. As shown in the ta-
ble, at first, as the balance factor increases, the CER gradually
decreases; and then when the balance factor continues to in-
crease, the CER gradually increases. It is speculated that when
the interclass variance is excessively penalized, some features
become indistinguishable, which is not conducive to sequence
classification. Finally, with only the third layer punished, the
CL and SVL adaptive models achieve CER reductions of 5.6%
and 5.8% reduction over SI model, respectively.
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Table 1: The CERs (%) of the CL and SVL adaptive models
under different balance factors.

CL SVL

λ CER(%) γ CER(%)

0 9.96 0 9.96

0.005 9.88 1 9.91

0.01 9.69 10 9.64

0.1 9.40 25 9.38
1 9.68 30 9.43

5 9.92 50 9.80

Table 2: The CERs (%) of the CL and SVL models with different
adapted LSTM layers.

Adapted LSTM layer CL SVL

SI 9.96 9.96

1 9.55 9.55

2 9.46 9.49

3 9.40 9.38

2,3 9.31 9.30

1,2,3 9.15 9.10

In the following experiments, we investigate how many and
which hidden layers should be used in adaptive training. The
combinations of different adaptation layers are investigated.
The results are summarized in Table 2. Note that each layer
corresponds to a separate center for multilayer adaptation in
the CL adaptive model. For each adaptive model, the balance
factor has been adjusted to achieve the best performance. It
can be seen that the highest layer is most important for adapta-
tion. If only one LSTM layer is adapted, the higher layer (3rd
layer) can achieve better performance than the lower layer (1st
layer). Furthermore, the CER steadily decreases as the number
of adapted layers increases. When all three LSTM layers are
used for adaptive training, the proposed CL and SVL adaptive
models achieve CER reductions of 8.1% and 8.6% over the SI
model, respectively.

5. Conclusions

In this work, we propose two novel regularization-based
speaker adaptation approaches, center loss (CL) regularization
and speaker variance loss (SVL) regularization. The idea of the
proposed methods is to reduce the speaker variability by encour-
aging speaker interclass compactness, which measures the de-
gree of mismatches. Different from previous work, both meth-
ods train an adaptive model on the fly by adding regularization
terms to the training loss function. Moreover, they hardly add
any complexity to the acoustic model: the CL only increases
the number of parameters of one vector while the SVL does
not increase any number of parameters. The experimental re-
sults show that both methods are effective at adapting the CTC
model, achieving CER improvements of up to 8.1% and 8.6%
over the SI model, respectively.

In the following work, we will investigate how to achieve
more effective speaker representation for calculating the regular
loss. Attention mechanisms and other schemes may be intro-
duced to enhance the hidden activation used to extract speaker
embeddings.
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