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Abstract
Wake word (WW) spotting is challenging in far-field due to
the complexities and variations in acoustic conditions and the
environmental interference in signal transmission. A suite of
carefully designed and optimized audio front-end (AFE) algo-
rithms help mitigate these challenges and provide better quality
audio signals to the downstream modules such as WW spotter.
Since the WW model is trained with the AFE-processed audio
data, its performance is sensitive to AFE variations, such as gain
changes. In addition, when deploying to new devices, the WW
performance is not guaranteed because the AFE is unknown to
the WW model. To address these issues, we propose a novel ap-
proach to use a new feature called ∆LFBE to decouple the AFE
gain variations from the WW model. We modified the neural
network architectures to accommodate the delta computation,
with the feature extraction module unchanged. We evaluate our
WW models using data collected from real household settings
and showed the models with the ∆LFBE is robust to AFE gain
changes. Specifically, when AFE gain changes up to ±12dB,
the baseline CNN model lost up to relative 19.0% in false alarm
rate or 34.3% in false reject rate, while the model with ∆LFBE
demonstrates no performance loss.
Index Terms: wake word spotting, far-field, audio front-end,
gain invariant, ∆LFBE

1. Introduction
Wake word (WW) is the gatekeeper that enables users to inter-
act with the cloud-based smart assistants through voice-enabled
devices like Amazon Echo, Google Home, Apple HomePod,
etc. One of the major challenges for those devices to scale to
millions of households is to cope up with the unknown acous-
tic conditions in users’ homes, which include varying levels of
acoustic echo, noise, reverberation, and interference which can
significantly impair the WW detection in spoken utterances.

Significant progress has been made in recent years to im-
prove far-field WW detection (also known as keyword spotting),
such as investigating novel model architectures [1, 2, 3, 4, 5, 6,
7, 8], improving the training efficiency [9, 10, 11, 12, 13], as
well as designing the audio front-end (AFE) algorithms to mit-
igate the challenges under a variety of acoustic conditions. A
suite of key algorithms in a multichannel audio front-end were
discussed in [14] for the Alexa voice services systems as shown
in Figure 1, where the AFE output is the input to the WW en-
gine. Note that the AFE is highly customized to the device,
depending on the computational budget. The behavior of the
AFE may vary from one device type to another.

Since the WW model ingests the AFE-processed audio and
the AFE is hardware dependent, the WW performance is sen-
sitive to the any change in the AFE. Ideally a jointly optimized
AFE and WW for each device would achieve the best perfor-
mance, however it is neither efficient nor scalable. In practice,
in order to improve the AFE robustness, the WW model is usu-

Figure 1: The Alexa voice service system described in [14].

ally trained and tuned with data collected from a large group of
devices with different AFEs. However if there is an AFE up-
date, the WW performance may be affected. Moreover, when
we deploy the WW model to a new device, the performance is
not guaranteed since the AFE is unknown to the WW model. In
fact, we will show in Section 3 that changing the AFE gain may
cause severe WW performance degradation or operating point
(OP) shifting, therefore harming the customer experiences.

Much work has been done in the literature to improve the
robustness to loudness variation of the audio, such as a trainable
AFE based on Automatic Gain Control (AGC ) [15, 16] and Per-
Channel Energy Normalization (PCEN) [17, 18, 19, 20]. PCEN
estimates the local magnitude per time step and frequency band
using a infinite impulse response (IIR) filter and has been ap-
plied to keyword spotting [17] and ASR [18]. The authors in
[21] showed that some loudness related features like 0-th MFCC
will lead to increase of false positive and proposed to use a
carefully selected set of features for vocal detection in mixed
music signals. Another family of approaches such as cepstral
mean subtraction (CMS) and cepstral mean-variance normaliza-
tion (CMVN) [22, 23, 24, 25] track the background noise level
over a certain period of time like 15 seconds. The effectiveness
of these approaches depends on the initial estimate or requires
sufficient history to adapt precisely. If a gating mechanism is
present, for example a VAD unit, or in a cascade architecture
[26], CMS is less effective since the available history is limited.

In this paper we address the challenges caused by AFE vari-
ance from a wake word modeling perspective and build gain-
invariant WW spotters. In our proposed WW models, instead
of using the traditional logarithm Mel-filterbank energy (LFBE)
features, we use a new feature called ∆LFBE, which is the tem-
poral difference of two contiguous LFBE frames. We show that
the ∆LFBE feature is invariant to a constant scaling of audio
volume that is typically caused by AFE gain changes. More-
over, the ∆LFBE feature provides additional invariance to fil-
ters whose magnitude response varies slowly within each Mel
band. We also show that the delta operation can be folded into
the computational graph of a neural network so that no extra de-
velopment effort is needed for feature extraction. To the best of
our knowledge, this is the first attempt to solve AFE gain invari-
ance in wake word spotting. Additional experiment on a public
dataset for an audio tagging tasks indicates that the benefit of
gain-invariance of the ∆LFBE generalizes to more tasks.
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2. Method
2.1. The ∆LFBE feature

The logarithmic Mel-filterbank energy (LFBE) feature can be
computed as:

LFBEi(x) = logmT
i ‖F(w � x)‖2, (1)

where LFBEi(x) denotes the ith LFBE band of a signal frame
x, mi denotes the ith Mel filter, F denotes the Fourier trans-
form, w � x denotes an analysis window function w element-
wise multiplied by the signal x, and the squared modulus is
applied element-wise.

Assuming that the changes in the AFE gain scaled the vol-
ume level of the audio signal by a multiplicative constant c, then

LFBEi(cx) = logmT
i ‖F(w � cx)‖2

= logmT
i |c|2‖F(w � x)‖2

= log |c|2mT
i ‖F(w � x)‖2

= 2 log |c|+ LFBEi(x).

(2)

Therefore changing the volume of audio corresponds to adding
a constant to all of the LFBE frames.

The ∆LFBE computes the pairwise difference between two
contiguous LFBE frames, i.e. ∆LFBE(x) = LFBE(x(t))−
LFBE(x(t − 1)). Therefore the constant get canceled, i.e.
∆LFBE(cx) = ∆LFBE(x).

In addition, if a filter h satisfies |F(h)| ≈ ci over the ith
Mel band, then LFBEi(h∗x) ≈ 2 log |ci|+LFBEi(x). This
means the per-Mel-band approximate scaling factor ci will get
canceled by the difference. Therefore the ∆LFBE is approx-
imately invariant to filters whose magnitude response varies
slowly within each Mel band.

2.2. Implementation

Rather than modifying the feature extraction module to perform
the delta operation, we propose two approaches to implemented
it in a neural network (NN). The delta operation can either be
implemented explicitly as a fixed layer, or implicitly by folding
it into the first layer as a constraint. Both approaches apply to
architectures such as CNN or fully-connected DNN.

For conventional 2D inputs , the delta operation is equiva-
lent to convolving the input with a filter of size 2×1×1, where
the dimensions correspond to time, frequency and channel. The
filter weights are [−1, 1], which means taking the difference
along the time dimension. In training, this layer can be set as
frozen during training to preserve the temporal delta operation.

For flattened inputs, applying the temporal delta operation
is a sparse linear transformation which can be folded into the
first layer. Let the receptive field contain n frames of LFBE
feature. Considering a vector composed of the ith LFBE-band
coefficients from all the frames in the context window, i.e. xi =
[xi

1, x
i
2, ..., x

i
n]T , taking the temporal delta can be viewed as

multiplying a sparse matrix D̄:

D̄xi =

−1 1
−1 1

· · · · · ·
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(3)

For the LFBE coefficients of all of the L bands, the temporal
delta transformation can be written as

D =


D̄

D̄
...

D̄


(n−1)L×nL.

(4)

Let WR×(n−1)L denote the first layer weight matrix where
R is the number of nodes in the first hidden layer. Let
VR×nL = WD be the equivalent first layer weight matrix
combined with the temporal delta operation. Considering the
rth row of W, which can be written as wr = [w1

r ,w
2
r , ...,w

L
r ],

where wi
r = [wi

r,1, w
i
r,2, ..., w

i
r,n−1], i = 1, 2, ..., L, then
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(5)
Notice that for each Mel band i, the sum is
−wi

r1+wi
r1−wi

r2+...+wi
r,n−2−wi

r,n−1+wi
r,n−1 = 0. (6)

This means the temporal delta operation requires the per-Mel-
band (row-block-wise) zero-sum constraint on rows of the first
layer weight matrix V. Conversely, a matrix V satisfying (6)
can be factored into WD where D is in the form of (4). There-
fore ∆LFBE for flattened input can be implemented by adding a
kernel constraint of per-Mel-band mean-subtraction on the rows
of the first layer weight matrix V.

2.3. Relation to other work

The spectral delta features are commonly used as supporting
features such as in MFCC for speech recognition tasks, as well
as the only input for RNN-based musical onset detection tasks
[27]. The ∆LFBE is a type of first-order spectral delta fea-
ture applied to LFBE. Our implementation simply embeds the
delta operation into the computational graph of a neural net-
work, therefore it is compatible with existing WW systems.

The 2D ∆LFBE can be viewed as a special case of
zero-mean convolution [28] with per-Mel-band zero-mean con-
straints. In the general zero-mean convolution, since the filter
covers a local time-frequency tile, it can cancel the constant gain
change as in (2), however it will not cancel the per-Mel-band
scaling changes. On the contrary, the ∆LFBE is invariant to the
per-Mel-band scaling.

3. Experiments
3.1. Model Architectures

The wake word spotting system in this paper is composed of
three main components: neural network, posterior smoothing
and peak detection, as shown in Figure 2. We experiment with
two types of WW model architectures: fully-connected DNN
and CNN, represented for low- and mid- computational bud-
gets. Table 1 summarizes the two model architectures for WW
spotting, where “f” denotes the fully-connected layer and “c”
denotes the convolution layer.

Figure 2: The WW Spotter

Table 1: Summary of WW Model Architectures

Type Layers # Par # Mul Input Smoothing
DNN 6f 222K 222K 540 WMA
CNN 5c3f 5.6M 6.7M 64x100 EMA

For decoding, the posteriors corresponding to the WW are
first smoothed by a windowed moving average (WMA) or expo-
nential moving average (EMA), then a thresholding with peak-
detection algorithm is applied to infer the WW hypothesis.
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Figure 3: Spotting “Alexa” with CNN WW models. In both
the bottom figures (using ∆LFBE), the DET curves are on top
of one another, indicating that the WW model with ∆LFBE is
robust to AFE changes.

The input audio to the WW spotter is re-sampled at 16KHz
and represented by 16-bits signed integers. The LFBE feature
is computed every 10 msec with a 25 msec analysis window de-
noted by w in (1). The input to the DNN is a 540-dimensional
vector from a stack of 80 frames of 20-bands LFBE feature
down-sampled by 3 and the input to the CNN model is 100
frames of 64-bands LFBE feature.

3.2. Experimental Setup

The data set for training the WW models is composed of 8.7M
annotated speech utterances with 10% augmented with noise
corruption to improve the general noise robustness in far-field.
For model training we use the standard cross-entropy loss and
the ADAM optimizer with learning rate of 0.001 and dropout
probability of 0.3. Batch-normalization is applied to all hidden
layers.

The original test data is collected from two types of devices:
Type A and Type B such that the training set contains data from
A but not from B. We used device Type A to study the effects
of AFE changes for an existing WW model; and used Type B
to study the case when deploying a WW model to a new de-
vice. The original test set contains 24341 streams from A and
14495 streams from B. The evaluation metrics reported here are
False Rejection Rate (FRR) and false alarm rate (FAR). Abso-
lute values of FAR in this paper are anonymized for confiden-
tiality reasons. The range of used FAR corresponds to the range
normally used for production keyword spotting models. We re-
port the two metrics in a detection-error-tradeoff (DET) curve
as we tune the operating point (OP) for each model. 1

3.3. Data simulation

To create our evaluation data sets representing different AFE
gains, we simulate the effects of gain changes by varying
the power level of the audio data from the original test set
with amplification or attenuation by certain decibels (dB). For
16-bits signed-integer PCM signals, the full-scale power is
10 log10(|215|2) ≈ 90dB. We took the scaling step size equiv-
alent to 1 bit shift, which corresponds to double or half the vol-
ume in magnitude, and is approximately 6dB (10 log10 22) in
power. We sweep the gain changes in {-12dB, -6dB, 0dB, 6dB,
12dB} and created 5 versions of test sets from the original test

1The experimental results in this paper do not represent the perfor-
mance of the production Alexa system.

Figure 4: Spotting “Alexa” with DNN WW models. In both
the bottom figures (using ∆LFBE), the DET curves are right
on top of one another, suggesting the performance is preserved
regardless of AFE gain changes.

set collected from device types A and B, respectively.
The scaling in volume may introduce clipping (in ampli-

fication) and quantization (in attenuation) noise. We decouple
the clipping and quantization with gain changes by applying
hard dynamic range compression (HDRC) to the audio before
changing the gain. That is, we first shrink the range of the signal
to only occupy bits from bth to (B−b)th bits by zeroing out the
least and most significant b bits, where b=2 corresponds to max-
imum bit shifts in our experiments, and B=15 is the maximum
number of bits of a 16-bits signed-integer representation. Note
that only zeroing out the leaset significant bits (LSBs) is equiv-
alent to quantize the signal into (B − b) bits, and only zeroing
out the most significant bits (MSBs) is equivalent to clipping
the signal at (B − b) bits.

3.4. Wake word spotting results

We run experiments of spotting the WW “Alexa” against the test
data with simulated gain changes in {-12dB, -6dB, 0dB, 6dB,
12dB}. Figures 3 and 4 show results with the baseline model
and ∆LFBE model of CNN and DNN architectures, respec-
tively. In both figures, the top row corresponds to the baseline
model and the bottom row corresponds to the ∆LFBE model;
the left column corresponds to device type A, which the models
are trained on, and the right column corresponds to device type
B which is unseen when training the WW model. The OP is
denoted by the square-shaped dots on the DET curves.

It can be seen that in both the CNN and DNN cases,
the baseline models are sensitive to the gain changes. For
CNN-baseline on device A (B), the OP shifts caused relative
FAR increase by 19.0% (9.0%) or FRR increase by 34.3%
(29.5%)when the gain level varies up to ±12dB. Choosing a
new OP along the curve restores the performance, but requires
extra tuning effort. For the unknown device B, the gain changes
not only caused OP shift, but also the DET curves, which means
it is not possible to restore the performance with OP tuning.

In contrast, the models using ∆LFBE show invariance to
the gain changes. The DET curves and OPs do not move w.r.t
the gain changes, indicating that the desired performance is pre-
served. The results verify the theoretical analysis in Section 2.

It is worth noting that for an unknown device such as de-
vice B, models with ∆LFBE perform slightly better than the
baseline models by comparing the curves at 0dB. This suggests
that ∆LFBE not only is invariant to AFE gain changes, but also
generalizes well to new devices.
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Figure 5: Scatter plots of decoding scores from CNN.

We further analyze the decoding scores with and with-
out the gain changes. The decoding score is the value of the
smoothed posteriors picked by the peak detection algorithm.
Figure 5 shows the scatter plots of the decoding scores with gain
changes against the scores without gain changes. It can be seen
that the decoding scores from the ∆LFBE models are strongly
correlated as the scatters are concentrated on the diagonal line.
The Pearson correlation coefficients (denoted by “pr” in Figure
5) also suggest that decoding scores of the ∆LFBE model are
less sensitive to the gain changes.

3.5. Effects of data simulation

We are also interested in how realistic it is for the simulated gain
change in real data in terms of WW spotting performance. Fig-
ure 6 show the DET curves of the original, quantized, clipped
and HDRC-processed. We can see that the gaps between the
DET curves for both models are negligible, indicating the quan-
tization and clipping noise have limited affects on WW spotting
on these data sets, therefore the simulated data is reliable to
mimic the AFE gain changes in reality.

Figure 6: Effects of quantization, clipping and hard dynamic
range compression (hdrc).

Moreover, comparing the two plots in the right column sug-
gests that ∆LFBE helps to close the small gap between the
curves of quantized and HDRC, indicating the ∆LFBE further
removes the disparity in data simulation.

Figure 7: Audio tagging results on DCASE2017 Task 2A.

3.6. Public dataset: audio tagging on DCASE2017
We also study the generalizability of the ∆LFBE feature on an
audio tagging task using a public dataset: DCASE2017 Task
2A [29]. It contains 17 classes of warning and vehicle sounds
related to driving environments for smart car applications. Clas-
sification F1 score is reported. The model is a “ResNet” in [30]
which is similar to ResNet-18 in [31] with fewer number of fil-
ters in each block (from [64, 128, 256, 512] to [28, 56, 112,
224]). We train models using ADAM optimizer with the initial
learning rate of 0.01. For each type of features we ran five trials
to compensate the randomness in training process. For evalua-
tion, on top of the original test set (0dB), we simulated test sets
with gain changes in {-18dB, -12dB, -6dB, 6dB, 12dB, 18dB}.

The bars and error bars shown in Figure 7 are the averaged
F1 and standard deviation over 5 trials. Models using LFBE
features (blue bars) are very sensitive to gain changes. There
are significant relative decreases in F1 score for gain of 18dB
(-10.27%) and -18dB (-6.72%). On the contrary, models us-
ing ∆LFBE (orange bars) have consistent performance across
different gains. Shorter error bars for models using ∆LFBE in-
dicate that it brings less variance across different trials.

One interesting observation is that when the gain is small (-
6dB, 0dB, 6dB), models using LFBE outperform ∆LFBE. We
hypothesize that this performance degradation is due to the lack
of proper finetuning on hyper-parameters. This proof of concept
experiment is designed to show the robustness to the effects of
AFE gain changes on a public datasets, so we did not put much
efforts to finetune the hyper-parameters.

4. Conclusions
In this paper we study the influence of audio front-end (AFE)
variation on far-field wake word (WW) spotting and propose a
modeling approach for AFE gain invariant WW spotting. For
edge devices such as smart speakers, AFE improves the SNR
of the signals from complex acoustic environments and helps to
mitigate the challenges in far-field. Since the wake word spotter
depends on the AFE, any change in AFE may cause degradation
in wake word performance. In this paper we proposed a novel
approach called ∆LFBE by implementing new modeling archi-
tectures which are equivalent to taking the temporal difference
of contiguous input LFBE frames. We showed both in theory
and by experiments that the ∆LFBE effectively eliminates the
influence by AFE gain changes and stabilizes the performance
of WW spotting . The ∆LFBE feature decouples AFE design
and WW model building and helps to deploy WW models to de-
vices with different AFEs. Besides WW spotting, the benefits
of the ∆LFBE generalize to other tasks such as audio tagging.

The ∆LFBE not only provides invariance to AFE gain
changes, but additional Mel-band-wise invariance. Future work
includes exploring the effects of ∆LFBE in other types of AFE
changes in real use cases.
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