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Abstract
In this paper, a novel platform for Acoustic Model training
based on Federated Learning (FL) is described. This is the first
attempt to introduce Federated Learning techniques in Speech
Recognition (SR) tasks. Besides the novelty of the task, the pa-
per describes an easily generalizable FL platform and presents
the design decisions used for this task. Amongst the novel al-
gorithms introduced is a hierarchical optimization scheme em-
ploying pairs of optimizers and an algorithm for gradient selec-
tion, leading to improvements in training time and SR perfor-
mance. The gradient selection algorithm is based on weight-
ing the gradients during the aggregation step. It effectively acts
as a regularization process right before the gradient propaga-
tion. This process may address one of the FL challenges, i.e.
training on vastly heterogeneous data. The experimental vali-
dation of the proposed system is based on the LibriSpeech task,
presenting a speed-up of ×1.5 and 6% WERR. The proposed
Federated Learning system appears to outperform the golden
standard of distributed training in both convergence speed and
overall model performance. Further improvements have been
experienced in internal tasks.

Index Terms: Acoustic Modeling, distributed training, feder-
ated learning

1. Introduction
Distributed Training (DT) has drawn much attention with the
goal of scaling the model training processes. Since the training
datasets become ever larger, the need for training paralleliza-
tion becomes more pressing. Different techniques have been
proposed over the years [1], aiming at a more efficient training
pipeline, such as “Horovod” [2, 3] or Blockwise Model-Update
Filtering (BMUF) [4]. These techniques are evaluated on met-
rics like throughput (without losing accuracy), model and/or
dataset size, and GPU utilization. However, there are a few ba-
sic assumptions implied during DT, such as data and device uni-
formity, efficient network communication between the working
nodes, etc. Apart from the communication/network constraints,
the data uniformity is paramount for the successful training, en-
sured by repeated randomization and data shuffling.

On the other hand, new constraints in data management are
now emerging. Some of these constraints are driven by the need
for privacy compliance of the personal data and information [5].
Increasingly more data is stored behind inaccessible firewalls or
on users’ devices without the option of sharing for centralized
training. To this end, the Federated Learning (FL) paradigm
has been proposed, addressing the privacy concerns, while still
processing such inaccessible data. This scheme aims at training
ML models, e.g., deep neural networks, on data sets found in
multiples of local end-nodes without exchanging any data be-
tween the “coordinator” and these working nodes. The general
principle is based on training different versions of the model
on local data samples while exchanging only updates for some

of the model parameters, e.g., the network parameters or the
corresponding gradients. An additional step of syncing these
local models and updating the global model at some frequency
is now required. There are different approaches for FL using
either a central server, i.e. a “coordinator or orchestrator”, or
employing peer-to-peer learning, without using a central server
– herein, the first approach is followed. As such, the server is
responsible for the sampling and communication between the
clients and the server, the model and the learning rate updating,
etc.

Other differences between FL and DT lay in the assump-
tions made on the properties of the local data sets [6]. DT
primarily aims at parallelizing local computing power, whereas
FL focuses on training with heterogeneous data sets. Since DT
focus is to train a single model on multiple nodes, a common
underlying constraint is that all local data subsets need to be
homogeneous, i.e. uniformly distributed and roughly about the
same size. None of these constraints are necessary for FL, [7];
instead, the data sets are typically heterogeneous, and their sizes
may span several orders of magnitude. The FL provides a
more flexible training framework, relaxing some of the DT con-
straints.

To the best of our knowledge, a massively distributed and
heterogeneous approach like the one presented here has not
been applied before on Speech Recognition (SR) tasks – some
work exists for KWS [8]. A sequence-to-sequence (seq2seq)
approach is adopted for the Federated Learning platform (for
the particular SR task) since the training of such all-neural mod-
els is much more straightforward than conventional SR systems,
all while being easier automating this process. The seq2seq
models have been gaining in popularity in SR tasks because
acoustic, language, and pronunciation models of a conventional
SR system can be combined into a single neural network [9].
There have been a variety of architectures for such models, in-
cluding “Recurrent Neural Network Transducer” (RNN-T) [10],
“Listen, Attend and Spell” (LAS) [11] and others. Herein, the
later paradigm is adopted because it consistently provides the
best offline results in our internal test sets. This seq2seq with
attention model includes an encoder (similar to the traditional
acoustic model), an attention layer, and a decoder (like the lan-
guage model), more in Section 2.2.

This paper is focused on the Federated Learning platform,
called here “Federated Transfer Learning” (FTL) platform,
for the SR task. The paper contributions, besides the sys-
tem description, are a hierarchical optimization and weighted
model aggregation algorithms. The paper consists of the
following sections: i. in Section 2 an overview of the cur-
rent state-of-the-art in Federated Learning is provided. The
overview description is not task-specific. ii. In Section 3 more
theoretical justification and details about the SR system are de-
scribed. Since this is the first application of FL in SR, theoreti-
cal extensions to this particular task are detailed. iii. Then, the
experimental results are presented in Section 4, and iv. Finally,
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discussion and conclusions can be found in Section 5.

2. Background
2.1. Federated Learning

Federated Learning related work, e.g., [7], is mostly focused on
communication efficiency, better optimization [12], and privacy
aspects. Algorithms for FL are designed to handle training data
with characteristics [6], such as data parallelism across a large
number of nodes K, data imbalance on some of the clients, and
data sparseness of local training examples. Although we are not
explicitly concerned with data sparsity in this work, it is pos-
sible the data found in each of the clients is skewed towards
different distributions – especially in SR applications, and the
proposed algorithms address such issues. The presented work
herein is mostly focused on the optimization side of FL, ad-
dressing challenges, such as data diversity and optimization.

Training statistical models using traditional distributed
learning algorithms on real application data {xi,yi}, i = 1, . . . ,N
requires the following steps: copy the data on a centralized stor-
age location, shuffle, uniformly distribute and then, train the
models with them, similarly to [6]. On the other hand, the
FL approach follows a different paradigm, requiring minimal
data transfers, while being privacy compliant. The training con-
straints are more relaxed since the available computing nodes
can be diverse or even inaccessible for periods of time. The
proposed algorithms do not require sweeping of the entire data
set for training but rather sampling of the available nodes at ev-
ery given iteration. Additionally, the constraint of labeled data
can also be alleviated.

2.2. Attention-based Sequence-to-Sequence models
(seq2seq)

Attention-based sequence-to-sequence models (seq2seq) yield
state-of-the-art performances for the SR task [11]. A seq2seq
model is composed of 3 sub-networks: encoder, decoder, and
attention. Given speech input X = {x1, ...,xT }, the encoder first
converts it into a sequence of high-level representations Henc.
In these experiments, the encoder is a bLSTM [13] with Layer-
Norm [14].

Henc = {henc
1 , ...,henc

T }= Encoder(X). (1)

The decoder acts as an acoustically-conditioned language
model. For predicting a certain token yn, the acoustic signal to
be used for conditioning is summarized by the attention module.
For every decoder time-step n, attention generates alignments
αn over Henc, and a corresponding context vector cn. The atten-
tion layer is a location-aware attention, as in [15].

cn,αn = LocationAwareAttention(dn,αn−1,Henc) (2)

Here dn is the decoder state vector at time n. The context vector,
cn, is leveraged by the decoder LSTM as below:

dn,hdec
n = Decoder(yn−1,cn−1,hdec

n−1), (3)

yn = DecoderOut(cn,dn) (4)

where yn the output model hypothesis.
The Decoder is a multi-layer LSTM while DecoderOut

consists of an affine transform with a Softmax output layer.
The model is trained with cross entropy loss L (·) between
Y = {y1,y2, ..., ji} and reference labels R = {r1, ...,rN ,〈eos〉}

L (Y,R) =−∑
n

ynlog(rn) (5)

3. Proposed Approach
The developed FTL platform is a simulation of the FL train-
ing process, while ignoring both the communication and se-
curity/privacy aspects of the task. Although a seq2seq SR
model [9] is used as an example, the findings and conclusions
can be generalized to other tasks, as well .

3.1. System Description

The proposed system, as in Figure 1, consists of a pool of K
clients with a fixed dataset per client. Contrary to DT, the train-
ing data is neither uniform nor reshuffled after every epoch –
the data segregation remains fixed throughout the task. For the
FTL scenario, randomly sampled N � K clients are processed
in every iteration T , and then returned to the pool, i.e. random
sampling with replacement. Using just these N clients without
loss in performance provides additional flexibility unique to the
proposed FTL platform.

Once these N clients finish processing data, the updated
models w̃T are returned to the server for aggregation, and a
global gradient is estimated. This gradient is used to update the

global model w(s) before the next iteration T + 1. Due to this
sampling of clients, the sweeping of all data takes longer. How-
ever, theoretical justification1, and experimental results have
shown that it is neither necessary for reaching an optimal point
nor detrimental for the model performance.

Figure 1: FTL Platform: Processing N clients per batch out of
a pool of K clients.

The FTL simulation platform allows the faithful simulation
of the FL system while excluding aspects such as encryption.
Due to the large size of our production-scale SR models, we
allow the simulation platform to leverage multiple GPUs so that
the training time remains reasonable, on the order of hours or
days instead of weeks or months. At the same time, we required
the platform to allow the simulation of an arbitrary number of
clients on a fixed and typically much smaller number of GPUs.
To address these requirements, the simulation is implemented
as an MPI program with P processes [16], each of which has
access to a dedicated GPU in a (potentially multi-node) GPU
cluster. The process with rank 0 simulates the server while the
remaining P− 1 processes are used as workers, simulating the
model training process of the clients.

In each iteration, the server randomly samples N � K
clients to participate in the training, as described above. The
simulation platform executes the model training for these N
clients by dispatching training tasks to the workers: Whenever

1The expectation of the coverage percentage is given by E(Y ) =
1− ((N −1)/N)k , where N is the population, and k is the number of
iterations.
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there is an idle worker, the client training code and all necessary
parameters (global model, learning rate, the identifier of client
data set, etc.) are sent, simulating the training process of that
specific client. The worker performs the computation for that
client and sends the results (locally trained model, loss, etc.)
back to the server process. Next, the server updates a dictionary
with the available resources and the remaining clients to be pro-
cessed. This simple scheduling process continues until all N
clients have been processed. To preserve the memory on the
server, we aggregate the client models in a streaming fashion as
they are returned by the workers. As an example in the case of
simple model averaging, the server aggregates all client models
into a single copy of the model that is stored in GPU mem-
ory and then divides the model parameters by N to compute the
average. Once the aggregated model has been computed, the
server updates the global (seed) model and re-iterates.

3.2. Hierarchical Optimization

Mini-batch optimization methods, extending classical stochas-
tic methods to process multiple data points at a time, have
emerged as a popular paradigm for FL [17]. Approaches like
“Federated Averaging” (FedAvg) [6], a method based on aver-
aging local stochastic gradient descent (SGD) updates, are pro-
posed. FedAvg can generalize well while showing it can signif-
icantly improve performance in terms of speed-ups.

Herein, a hierarchical optimization process is proposed, fur-
ther enhancing FedAvg. The training process is held on two
tiers: first, on the client-side using a “local” optimizer, and then
on the server with a “global” optimizer after aggregating the
client gradient estimates. This two-level optimization approach
combines the merits of FedAvg with additional speed-ups due
to the second optimizer. Further, aggregating the gradient esti-
mates is shown beneficial due to the inclusion of more data per
iteration. The proposed algorithm appears to converge faster
than Horovod, after data volume normalization 2. Additionally,
it offers more flexibility and enhanced optimization capabilities
due to the fact that various combinations/pairs of optimizers can
be used for the client/server setups.

In more detail, the jth client update runs t iterations with
t ∈ [0, t j], locally updating the seed model with (6) (herein, with-
out loss of generality showing for the SDG optimizer) with a
learning rate of η j ,

w( j)
t+1 = w( j)

t −η j∇w( j)
t (6)

where w( j) the local model in jth client.
The jth client returns a smooth approximation of the local

gradient g̃( j)
T (after these tJ iterations) as the difference between

the latest updated model with the previous global model w(s)
T−1

g̃( j)
T = w( j)

T −w(s)
T−1 (7)

The distributed training process is synchronous for these N
clients. The gradients g̃( j) are estimated in time steps T (or
equally when all clients have processed their data after t j iter-
ations). Note that estimating the gradients gT is difficult and

memory intensive. Herein a difference approximation g̃( j)
T is

used instead.
After all the gradient samples are weighted and aggregated

accordingly, Section 3.3, the global model w(s)
T is updated as

2The comparison between Horovod and the proposed algorithm are
with similar amounts of data processed.

in (8) (herein also using SGD),

w(s)
T = w(s)

T−1 −ηs ∑
j

α( j)
T g̃( j)

T (8)

where α( j)
T are the weights for the aggregation step, as below.

The process described above is a simple form of “online
training” [18]. While updating, the seed model can be drifted
away from the original task. In order to ensure compatibility
with previous tasks without increasing the network capacity, we
propose an additional training iteration over held-out data on
the server side (9), after the model aggregation and update step.
This way, the model can be “steered” back in a direction match-
ing the held-out data. A “gentle” update of the model can avoid
diverging too much from the task of interest. This is particularly
useful for the case of imbalanced and/or vastly heterogeneous
data.

w(s)
t̃+1

= w(s)
t̃ −ηw∇wt̃ (9)

The convergence speed for the hierarchical optimization
scheme is improved by a factor of ×1.5, without any impact
on performance. Also, the communication overhead is signif-
icantly lower since the models are transferred twice per client
and iteration (instead of transmitting the model gradients after
every mini-batch, as in [19]).

3.3. Weighted Model Averaging

When dealing with heterogeneous data, there are a few chal-
lenges for the aggregation step, (8). First, not all clients contain
data that are represented by the model; consequently, the corre-
sponding training loss is expected significantly higher. In such
cases, the model moves to a direction that is mostly different
from the rest of the models. Also, the quality of a particular
data partition (local client data) might be different, leading to
noisier gradients. Either way, these gradients should be pro-
cessed differently than the rest. The proposed solution here
is to use weights during the aggregation step, i.e. of the lo-

cal gradients g̃( j)
T , in (7). This approach is to use the training

losses as weighting coefficients. Although weighted aggrega-
tion does not significantly affect the overall WER performance
(at least on the LibriSpeech task, where data is more homoge-
neous), it makes the training convergence significantly faster.
The weighting process can be seen as a type of regularization
de-emphasizing gradient directions, where the models diverge
too much. Thus, the back-propagation updates are based on the
less noisy mini-batch gradients.

This “deterministic” approach utilizes the negative train-

ing loss coefficients L , in Eq. (5), as weights α( j)
t ,

after passing them through a So f tmax(·) layer, α( j)
t =

exp(L
( j)

t )/∑i exp(−L
(i)

t ). Higher values for L ( j) coeffi-
cients can be seen as an indication of batches that are not well
represented by the model. Possible sources of such loss values
are either data of bad quality, e.g., noisy data, or data distribu-
tions further apart from the model. Either way, the resulting
model (after the training step) will have been “moved” more,
further apart from the rest of the models; thus, the aggregation
will be noisier. Batches3 where the training losses are of simi-
lar magnitude would be expected to move the model in a similar
direction; thus, the aggregation process will be better aligned.
Such alignment of the aggregated gradients is also beneficial for

3We interchangeably use ‘batch’ and ‘client’ in this analysis – each
client can be seen as a large batch of data, while FL training.
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the convergence speed, as shown in the experimental part. Since
the Softmax layer considers all the available training steps, it de-
emphasizes those with larger values of the corresponding losses.

4. Experiments and Results
The LibriSpeech task [20] (LS task)is used as the experimental
testbed. The dataset contains about 1k hours of speech from
2.5k speakers reading books. In this experiment, a 6-layer
bLSTM, with dropouts, is used for the encoder, 2 layers of
uni-directional LSTM are used for the decoder, and finally, a
conventional location-aware content-based attention layer with
a single head is used. The input features are 80-dim log mel
filter-bank energies, extracted every 10 msec. 3 frames of fea-
tures are stacked and applied on the encoder, 16k subwords
based on a unigram language model are used as the recognition
unit. Initially, a state-of-the-art seq2seq model is trained using
Horovod on the entire training set of 920h. The performance of
this model provides the lower bound of the WER since all the
data is used in a centralized manner.

For the FL-related experiments, the training is split into two
parts of 460h each, with no overlapping speakers. The first part
is used to train a seed model, without ever using this data again.
Then, the 2nd part of the dataset is used to simulate online train-
ing, under the FL conditions. We will follow two different di-
rections for the FL training process: first, the training set is split
into 7 distinct parts without reshuffling the data again (contrary
to Horovod or other DT approaches). The splits are random,
with no overlapping speakers across them. The second direc-
tion is to split according to the remaining 1100 speakers. Each
one, either 7 or 1.1k, of the partitions is assigned to a client
node. In the FTL framework, the clients are unaware of the rest
of them – only the server knows which the clients are used, ran-
domly sampling which of them will be aggregated. The number
of sampled clients N in our experiments varied from 25 to 400,
higher N being better but with minor fluctuations in overall per-
formance. Based on the compromise between communication
overheads and memory usage, we henceforth set N = 100.

The weighting approach for α j
T is based on the training loss,

herein noted as So f tmax-weighting.

LibriSpeech Clean Task

Training Scenario WER (%)

Centralized
SotA (lower bound) 4.00%
training on 1st 50% of LS(seed) 5.66%
online training on 2nd 50% of LS 4.61%

FTL
FL-based Single Optimizer 4.55%
Hier. Optim. (7 clients) 4.51%
Hier. Optim. (1.1k clients) 4.45%
+ Softmax Weighting 4.41%

Table 1: System evaluation on the LibriSpeech clean test set,
training an offline seq2seq with attention model.

The first 3 rows in Table 1 are with centralized training
(Horovod), with the lower bound in performance coming from
the model trained on the entire dataset. The 4% WER for this
model appears inline with the literature. The 2nd model (“on-
line training” row) is based on the seed model initially trained
on the 1st half of the data till convergence. The model is online
trained with the 2nd half of data. In both steps, Horovod is used.

Different strategies for model aggregation were investi-
gated, such as FedAVg, i.e. “single optimizer” row in the Table,

or hierarchical optimization using optimizers such as Adam,
LAMB, LAR, and SGD. Combinations of the server/client op-
timizers were also investigated. The differences in performance
for these combinations of optimizers were rather limited, and
for the sake of space, are not listed here. However, a state-less
optimizer on the client-side is adopted as the standard, because
the initial model is changing after each iteration4 and therefore,
keeping the state of the previous iteration/model as part of the
local optimizer did not make sense. The combination used for
all the experiments is Adam/SGD for the server/client.

The next experiment was to transition to a per-speaker par-
titioning of the data, i.e. creating 1100 partitions and an equal
number of clients. As mentioned above, 100 clients per itera-
tion are sampled out of the pool of 1100, processed and finally
aggregated. The transition from a homogeneous data split, such
as the case of 7 partitions, to a more heterogeneous per-speaker
partition lightly improved the performance of the model. This
can be explained by the additional diversity provided when ag-
gregating such client models. However, due to this diversity, the
convergence during training required additional iterations.

The proposed weighted aggregation addresses this issue by
de-emphasizing the gradients from batches (or equally clients)
poorly modeled. Although the overall performance was not
impacted (particularly in the case of the LS task), the overall
convergence speed was improved by a factor of around ×1.5.
Approximately 650 iterations are required for the case of un-
weighted aggregation versus only 440 for the Softmax-based
weighted average. The variations in performance between dif-
ferent approaches are limited; however, the task is quite ho-
mogeneous. Further improvements in other in-house tasks, e.g.,
adaptation on presentation sessions, have been realized, as well.

5. Discussion and Future Work
Herein, a novel Federated Learning platform for Speech Recog-
nition tasks is presented. This is the first of its kind as far as the
authors know. Herein, Federated Learning approaches for other
tasks were investigated and compared with the proposed ones.
Although the discussion about the platform is focused on the
task in hand, this platform can be easily generalized to other
tasks. Currently, we are working on other classification tasks
using the FTL platform, employing other modalities.

In addition to those approaches, we are presenting novel
algorithms addressing challenges unique to the Speech Recog-
nition scenario. This novel approach of weighting the gradients
between mini-batches allows for enhanced convergence speed-
ups and improved model performance. The proposed gradi-
ent aggregation scheme acts as a regularizer de-emphasizing
batches where the data are not well modeled. Herein, a
weighted gradient aggregation algorithm is described enabling
×1.5 speed-up and 6% WERR on LibriSpeech task.
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