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Abstract

The pooling mechanism plays an important role in deep
neural network based systems for text-independent speaker
verification, which aggregates the variable-length frame-level
vector sequence across all frames into a fixed-dimensional
utterance-level representation. Previous attentive pooling meth-
ods employ scalar attention weights for each frame-level vector,
resulting in insufficient collection of discriminative informa-
tion. To address this issue, this paper proposes a vector-based
attentive pooling method, which adopts vectorial attention in-
stead of scalar attention. The vectorial attention can extract fine-
grained features for discriminating different speakers. Besides,
the vector-based attentive pooling is extended in a multi-head
way for better speaker embeddings from multiple aspects. The
proposed pooling method is evaluated with the x-vector base-
line system. Experiments are conducted on two public datasets,
VoxCeleb and Speaker in the Wild (SITW). The results show
that the vector-based attentive pooling method achieves superior
performance compared with statistics pooling and three state-
of-the-art attentive pooling methods, with the best equal error
rate (EER) of 2.734 and 3.062 in SITW as well as the best EER
of 2.466 in VoxCeleb.

Index Terms: text-independent speaker verification, deep neu-
ral network, pooling mechanism, vector-based attention

1. Introduction

Speaker verification (SV) serves as a common research topic to
check “who spoke” based on the voices, which can be applied in
various fields, such as criminal investigation, judicial forensics
and telephone identification. Given a slice of speech, an SV
system aims to identify if it belongs to a specific person. SV
systems can be generally classified into two typical categories
according to the content of utterances: text-dependent and text-
independent. Text-dependent SV systems require the texts of
utterances to be fixed; while text-independent SV systems have
no restrictions on the texts of utterances, which is the focus of
this work.

Over the past decade, text-independent SV tasks commonly
have relied on the combination of i-vector-based representa-
tion [1] and a probabilistic linear discriminant analysis (PLDA)
[2] backend classifier. Recently, with the great success of
deep learning over a wide range of machine learning tasks,
an increasing number of studies introduce deep neural network
(DNN) relevant techniques into the SV area, and achieve com-
petitive verification performance compared with traditional i-
vector-based works. In detail, DNN-based SV systems can be
divided into two classes: deep speaker embedding systems and
end-to-end systems. Deep speaker embedding systems [3-6]
train a DNN instead of i-vector to produce speaker embeddings
and use a separately trained PLDA classifier to measure em-
bedding pairs; while the end-to-end DNN SV systems try to

Copyright © 2020 ISCA

936

put the two stages of deep speaker embedding systems together.
The end-to-end systems usually train the DNN architecture with
various kinds of loss functions (e.g., triplet loss [7, 8], adversar-
ial loss [9, 10] and others [11, 12]) to discriminate between the
same-speaker and different-speaker pairs and adopt the cosine
distance scores to evaluate the test utterances. Among DNN-
based SV systems, x-vector [3], as well as its modified ver-
sion [13-17], achieves superior performance than i-vector and
becomes the state-of-the-art method for current SV works.

For text-independent SV, since the input utterances have
variable lengths, most DNN-based SV systems employ a pool-
ing layer to aggregate the variable-length frame-level vector se-
quence so as to obtain a fixed-dimensional utterance-level vec-
tor. In the implementation of x-vector, a statistics pooling layer
is employed by computing the mean and standard deviation of
frame-level features. However, the statistics pooling normally
assigns equal weight to each frame-level vector, which ignores
the importance of some critical frames during the training, re-
sulting in a challenge for the performance improvement. To
address the challenge, recent studies were proposed to inte-
grate the attention mechanism into the pooling layer. For in-
stance, Okabe er al. [18] proposed an attentive statistics pooling
method which acquires weighted mean and standard deviations
of frame-level features, and the weights are calculated by an at-
tention mechanism. Zhu et al. [19] introduced a pooling method
where the weights are determined by a self-attention mecha-
nism with multiple attention heads. India er al. [20] presented
a self multi-head attention method where the weights are cal-
culated considering different parts of the sequence. However,
there is a common limitation in prior methods that the attention
weight for each frame-level vector is naturally computed as a
scalar. As a result, each element of a frame-level vector has an
equal attention weight when computing the weighted mean and
standard deviation, leading to insufficient extraction of impor-
tant features.

Under the insight, inspired by recent generalized pooling in
sentence embedding [21], we present a self vector-based atten-
tive pooling method for text-independent SV, where the vecto-
rial attention instead of scalar attention is adopted. The vector-
based attention can extract fine-grained features and more dis-
criminative information from the encoded representations. Be-
sides, we extend the vector-based attentive pooling in a multi-
head way so as to discriminate speakers from multiple as-
pects. We implement the pooling methods in the x-vector base-
line system and compare the proposed pooling method with
four state-of-the-art pooling methods. Experiments conducted
on two public datasets, VoxCeleb [22-24] and Speaker in the
Wild (SITW) [25] demonstrate the effectiveness of the proposed
method. The remainder of this paper is organized as follows.
Section 2 introduces the proposed pooling method. The experi-
mental setup and results are presented in Section 3 and Section
4 respectively. Finally, the conclusion is given in Section 5.
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(a) Attentive statistics pooling. (b) Vector-based attentive pooling.

Figure 1: Structure of two attentive pooling methods.

In this section, we review the scalar attentive pool-
ing method called attentive statistics pooling [18] for text-
independent SV, and then describe the proposed vector-based
attentive pooling method.

2.1. Attentive statistics pooling

Attentive statistics pooling method aims to capture more infor-
mation for important frame-level features with respect to a long-
term feature variation. Given a sequence of encoded hidden rep-
resentation, this method assigns a weight over each representa-
tion of the sequence through a trainable layer and then obtains
respective weighted mean and weighted standard deviation of
these representations as the utterance-level representation.

Considering that the frame-level encoded representa-
tion is a sequence of hidden vectors, denoted as H =
[hl, cany ht, ceey hT] S RTXN with ht = [etl, ceey Ctmy ey etN}
where T is the number of frames and NV is the dimension of
each hidden vector h;. The relevant scalar weight for each ele-
ment of the vector h; can be defined as follows:

we = 7(0" f(Why 4 b)), (1)

where 7 is the softmax activation function calculated as follows:

T(er) = _oxpler) .
= ST exnte)

In Eq. (1), W € RV*¥ js the weight matrix; b € RY is
the bias item; v € RY is the weight vector; f(-) is a non-linear
activation function, e.g. ReLU.

Given the set of weights over all elements of the sequence,
the weighted mean vector ;1 and weighted standard deviation
vector o can be obtained by the following equations:

(@)

T
p="> wih, 3)
t=1
T
o= Zwtthht*,Lt@,Uq 4
t=1

where ® denotes the element-wise product.
Finally, the utterance-level representation E is the concate-
nation of ¢ and o:

E = [p;0]. (%)
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Note that the weighted mean p and standard deviation o
effectively reflect the speaker’s nature in terms of the tempo-
ral variations over long-term contexts, whose effectiveness has
been proved in recent studies [18, 19]. Therefore, we also gen-
erate the concatenated weighted mean and standard deviation
vector as the output of pooling layer in the implementation of
the vector-based attentive pooling method.

2.2. Vector-based attentive pooling method

The attentive statistics pooling method provides the attention
weight w; for each vector h; at the frame ¢ as a scalar, where
each element ey, of the h; has the same weight. Nonetheless,
each element can have different weight for a better discrimi-
native utterance-level representation. Based on above observa-
tions, we present a self vector-based attentive pooling method
for text-independent SV, as shown in Figure 1.

The vector-based attention was first proposed in [21] for
sentence embedding. Such attention provides a vectorial atten-
tion weight for each encoded hidden representation, which col-
lects more discriminative information than traditional scalar at-
tention. The vector-based attention weight over all frames can
be represented as a matrix A = [a1, ..., ay, ...,ar] € RTXN
with a; = [wi1, ..., Wen, ..., wen]. The aq is the vectorial
weight for each element of the vector h; at the frame ¢, and
the matrix can be computed as:

A=7(Waf(WiH" +b1) +b2)7, (©6)

where W1 € R%*N and Wy, € RV*9 are weight matrices;
b1 € R% and by € RY are bias items; d, is a hyper-parameter.
The softmax function ensures that the sum of all elements is 1
in every column of the weight matrix A. Each element wy,, of
the vector a is the attention weight for the element e, of the
h:. The scalar attention is a special case of the vector-based
attention when the element in a; is equal to each other, which
can be represented as

W1 :...:wm:...:th,Vte {1,...,T}. 7)

In order to make the vectorial attention discriminate fea-
tures from multiple aspects, we extend the pooling method in a
multi-head way as following equation:

®

where A® is the vectorial weight matrix generated by i-th atten-
tion head and I is the number of attention heads.

The i-th weighted mean vector 11* can be calculated by sum-
ming up the element-wise products of each frame-level vector
h: and the vectorial weight a’:

A' =T (Wa f(WIHT +b1) +b3)", Vi € {1,..., I},

T
p=> a;Oh,Vie{l,.., I} ©)

t=1

And the i-th weighted standard deviation vector o* can be ac-
quired as follows:

T
o' =D i Oh ©hy - pt©pi, Vi€ {1,..., I} (10)

t=1

Finally, the output E’ of the vector-based attentive pooling
layer is the vector concatenating ;° and o in all I attention
heads:
an



Table 1: Experimental results on SITW. Boldface values are the best results.

Embedding(Attention heads) = Parameters EER(%) D];‘éell;;%r?fm DCFI0—° EER(%) g\gg&(l)tﬂn DCFI0=?
i-vector [1] - 5.622 0.4799 0.6814 6.534 0.5211 0.6939
statistics pooling [3] 4.4M 3.389 0.3367 0.5315 3.581 0.3639 0.5618
self multi-head attention [20] 3.6M 3.157 0.3152 0.5270 3.417 0.3464 0.5367
attentive statistics pooling [18] 6.7M 2.772 0.3042 0.5083 3.280 0.3302 0.5371
self-attentive pooling(1) [19] 5.2M 3.003 0.3094 0.4784 3.472 0.3409 0.5489
self-attentive pooling(2) [19] 6.7M 2.965 0.3190 0.5044 3.390 0.3421 0.5272
self-attentive pooling(5) [19] 11M 3.157 0.3062 0.4804 3.144 0.3355 0.5136
vector-based attentive pooling(1) 5.9M 2.849 0.2808 0.4628 3.062 0.3218 0.5044
vector-based attentive pooling(2) 8.9M 2.734 0.2845 0.4601 3.062 0.3195 0.4955
vector-based attentive pooling(3) 12M 3.080 0.2919 0.4801 3.253 0.3402 0.5314

If the vector-based attention is multi-head, a penalty term
P is added to the cross-entropy loss function:

I
max(\ — [|[A° — A7|[3,0)  (12)
i+1

1
P:pz
i=1

where p and )\ are corresponding hyper-parameters; || - || rep-
resents the Frobenius norm of matrix. The penalty term en-
courages the diversity of the attention matrices across different
heads of attention so that each head can collect dissimilar infor-
mation.

3. Experimental setup
3.1. Datasets and baselines

The experiments are conducted on two public datasets, Vox-
Celeb [22, 23] and SITW [25], which have been commonly
used in relevant comparative experiments [26-28]. The train-
ing set is the development portion of VoxCeleb2 without any
data augmentation technique, which contains 5994 speakers and
over one million utterances. There are three test sets in the
two datasets including SITW development core-core condition,
SITW evaluation core-core condition and VoxCelebl test por-
tion. The VoxCeleb dataset contains short utterances with the
average length of 8 seconds, while the duration of utterances in
SITW dataset ranges from 6 seconds to 180 seconds. Hence, all
models in our experiment can be evaluated with both short and
long utterances.

There are two baseline systems in our experiment, X-vector
[3] and i-vector [1]. In x-vector system, the proposed vector-
based attention pooling is compared with three baseline pool-
ing methods: (i) statistics pooling of traditional x-vector, (ii)
attentive statistics pooling [18], (iii) self multi-head attention
based pooling [20], and (iv) self-attentive pooling with single
head, two heads and five heads [19]. For better comparison,
the vector-based attentive pooling is set with a single head, two
heads and three heads, respectively.

3.2. Model Configuration

For the i-vector baseline, the input acoustic features are 24-
dimension MFCCs with deltas and delta-deltas, which have a
total of 72 dimensions. For the x-vector baseline, MFCCs of
30 dimensions are used. All features are acquired from 25ms
windows with 10ms shift between frames. In addition, we ex-
ploit mean normalization with a 3-second window, and adopt

938

energy-based voice active detection (VAD) to remove the non-
speech frames. The data preprocessing step is handled by Kaldi
toolkit [29].

The parameters of baseline systems and methods are con-
figured as corresponding literature. In i-vector system, the di-
mension of i-vector is 400. In x-vector system, the dimension of
the first four frame-level layers and two utterance-level FC lay-
ers is set as 512; while the dimension of fifth frame-level layer
is set as 1500. For the self multi-head attention based pooling,
the number of heads is set as 15. For the self-attentive pooling,
the parameter d, is set to 500. For the proposed vector-based
attentive pooling, the parameter d,, p and A are set to 500, 1
and 1 respectively.

The embedding extraction and network training of all
DNN-based systems are implemented on an existing Tensorflow
tookit [30], where the standard softmax with cross entropy loss
function and stochastic gradient descent (SGD) optimizer with
momentum of 0.9 are employed to compute the loss score. The
batch size is set as 128. The learning rate is set to 0.001 initially,
and then is continuously halved once the validation loss fails to
decrease for a while till it goes down below 10~°. Afterwards,
the outputs of the second utterance-level layer are extracted as
speaker embeddings. We use the PLDA model implemented
in Kaldi as the backend classifier to compute verification scores
for all comparative systems. The extracted embeddings are cen-
tered and projected to 200-dimensional vectors using linear dis-
criminative analysis (LDA), which are then length-normalized
and computed by the PLDA.

4. Result

We evaluate the experimental results in terms of equal error rate
(EER) and the minimum of normalized detection cost function
for which the prior target probability is set as 0.01 (DCF10~2)
and 0.001 (DCF10~?).

4.1. Results on SITW

Table 1 shows the performance on SITW. All attentive pooling
methods outperform statistics pooling and the two-head vector-
based attentive pooling achieves the best performance in almost
all metrics, which suggests the proposed method is effective for
text-independent SV. In terms of single-head attention whose
parameters are less than multi-head attention, the vector-based
pooling also results in better performance than other attentive
methods in almost all aspects except for the EER of Develop-
ment set. This result indicates that the vector-based pooling



Table 2: EER(%) for different durations on SITW. Boldface values are the best results.

. . Development Evaluation
Embedding(Attention heads)  —15—15 75 75405 >d0s <155 15255 25405  Sd0s
i-vector [1] 6452 5609 5331 5287 7901 6.789 5507 6.426
statistics pooling [3] 3970 3.341 3.026 3.172 4289 3.585 2753 3916
self multi-head attention [20] 3722 3222 2882 3172 4.063 3.127 2.863 4.217
attentive statistics pooling [18] 3.226  2.745 2738 2870 3.612 3.204 2.753 3.715
self-attentive pooling(1) [19] 3722 2745 2882 2870 4.063 3432 2753 4217
self-attentive pooling(2) [19] 3226 3.103 2.594  3.172 3.837 3.280 2.533 4.016
self-attentive pooling(5) [19] 4218  3.103 2.882 2870 3.386 3204 2.533 3614
vector-based attentive pooling(1) 2.978  2.983 2594 2719 3386 3.127 2,533  3.313
vector-based attentive pooling(2) 3.226  2.864 2305 2568 3.160 2975 2.643 3514
vector-based attentive pooling(3)  3.226  3.222 2.594 3323 3.612 3432 2533 3514

Table 3: Experimental results on VoxCeleb. Boldface values are
the best results.

Embedding EER(%) DCF10~2> DCF10~3
i-vector [1] 5.657 0.5016 0.6593
statistics [3] 2.556 0.3079 0.5582
self multi-head [20] 2.709 0.2804 0.4032
attentive statistics [18] 2.593 0.2947 0.4322
self-attentive(1) [19] 2.667 0.3002 0.4307
self-attentive(2) [19] 2.773 0.2940 0.4877
self-attentive(5) [19] 2.635 0.2887 0.4041
vector-based attentive(1) 2.582 0.2894 0.5126
vector-based attentive(2) 2.466 0.2726 0.4286
vector-based attentive(3) 2.641 0.3070 0.4107

makes the network to collect more discriminative information
for speaker embeddings with a single attention head. In ad-
dition, the single-head vector-based attentive pooling has only
5.9M parameters, less than that of attentive statistics pooling,
which reduces the computational cost of the network.

In order to evaluate the performance of pooling methods
on different durations, we divide the test utterances in SITW
dataset into four groups based on duration. The duration of four
groups are shorter than 15s, between 15s and 25s, between 25s
and 40s, and longer than 40s, respectively. Table 2 reports the
EER results of all utterance groups. The single-head and two-
head vector-based attentive pooling achieves the best EERs in
almost all duration conditions except for 15-25s of the devel-
opment set, which indicates that this method is robust to vari-
ous durations. In addition, we observe that the performance of
some utterance groups is lower for most methods, e.g. groups
shorter than 15s in both two testsets and groups longer than 40s
in SITW Evaluation testset, which suggests that speaker veri-
fication of very short and long utterances is more challenging.
Our proposed vector-based attentive pooling achieves improve-
ments over other pooling methods in these two duration groups,
demonstrating the effectiveness of our method in both short and
long utterances.

4.2. Results on Voxceleb

Table 3 shows the performance on VoxCeleb. The vector-based
attentive pooling with two attention heads lead to the best EER
as well as DCF10™2. Surprisingly, most attentive pooling meth-
ods are not more effective than statistics pooling. Only two-
head vector-based attentive pooling outperforms statistics pool-
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ing in terms of EER. The main reason may be that the short
duration of test utterances in VoxCeleb fails to make the net-
work emphasize important features. The experimental results
suggest that attentive pooling methods have little impact on per-
formance improvement in VoxCeleb.

4.3. Impact of multi-head attention

Different from self-attentive pooling which performs better
with more attention heads, the vector-based attentive pooling
achieves the best performance with two attention heads rather
than three attention heads, which demonstrates the two-head
vector-based attentive pooling can extract sufficient informa-
tion to discriminate speakers. Apart from that, it can be seen
in Table 1 that adding more attention heads results in substan-
tial increase of the network parameters. When the number of
attention heads is set for the best performance, the vector-based
attentive pooling not only performs better but also reduces the
number of attention heads as well as the network parameters
compared with the self-attentive pooling.

5. Conclusion

In this paper, we propose a vector-based attentive pooling
method for text-independent speaker verification, which intro-
duces vectorial attention into the pooling layer of the network
architecture. The vectorial attention can extract more discrim-
inative information from the frame-level output. Besides, the
vector-based attentive pooling is extended in a multi-head way
so as to collect information from multiple aspects.

We evaluate the proposed method with the x-vector baseline
system and compare it with statistics pooling and three state-of-
the-art attentive pooling methods. Experiments conducted on
VoxCeleb and SITW demonstrate the effectiveness of the pro-
posed method. The vector-based attentive pooling achieves the
best EER, DCF10~2 and DCF10~2 in SITW, and the best EER
and DCF10~2 in VoxCeleb. In the future, we plan to incorpo-
rate the proposed method into more DNN-based network archi-
tectures and evaluate the effect of different configurations.
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