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Abstract
State-of-the-art speaker verification models are based on deep
learning techniques, which heavily depend on the hand-
designed neural architectures from experts or engineers. We
borrow the idea of neural architecture search(NAS) for the text-
independent speaker verification task. As NAS can learn deep
network structures automatically, we introduce the NAS con-
ception into the well-known x-vector network. Furthermore,
this paper proposes an evolutionary algorithm enhanced neural
architecture search method called Auto-Vector to automatically
discover promising networks for the speaker verification task.
The experimental results demonstrate our NAS-based model
outperforms state-of-the-art speaker verification models.
Index Terms: speaker verification, deep learning, neural net-
work, neural architecture search.

1. Introduction
Speaker verification is the process of verifying whether an ut-
terance belongs to the same speaker, based on enrolled speaker
information. It can be categorized as text-dependent speaker
verification (TD-SV) and text-independent speaker verification
(TI-SV). Relatively, TI-SV is more convenient for practical ap-
plications, as it poses no constraints, e.g., duration or lexical
content, on utterances to verify. However, it is also more diffi-
cult to achieve a good performance, due to many potential vari-
abilities of the utterances. In this work, we focus on TI-SV.

In the early years, the i-vector [1] based models with
PLDA[2] backend dominated the development of the speaker
verification application. In recent years, the deep neural net-
works(DNN) trained as acoustic models for automatic speech
recognition (ASR) are integrated into the i-vector system[3, 4,
5]. Although the ASR DNN can enhance phonetic modeling
in the i-vector UBM, it adds a high computational cost to the
i-vector system. In the latest years, DL-based techniques can
be used as utterance-level speaker feature extractor[6, 7, 8, 9],
and enable an end-to-end pipeline to discriminate between
speakers[10, 11, 12].

However, these architectures are hand-designed by experts
or experienced engineers. It is highly demanding on their
knowledge and experiences. As a result, neural architecture
search[13][14] techniques are becoming an increasingly popu-
lar topic in both academia and industry, because of its great po-
tential to automatically find more effective architectures to out-
perform hand-crafted ones. The early works on NAS are based
on reinforcement learning or evolutionary algorithm, such as
[13, 15, 16, 17, 18] . But these approaches are expensive in
time. To reduce search time costs, researchers proposed a wide
range of optimization paradigms[19, 20, 21, 22], where hyper-
network[23, 24, 25, 26] is a typical representative.
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In this work, we bring the idea of hyper-network based neu-
ral architecture search into text-independent speaker verifica-
tion. We managed to improve its search efficiency by use of a
memetic evolutionary algorithm. Our work has several contri-
butions as follows. (1) As NAS can learn deep network struc-
tures automatically, we introduce the NAS conception into the
x-vector network. (2) To learn more promising structures for
speaker verification, we build a large-scale hyper-network with
repetitive architecture motifs. (3) To discover more promising
candidate networks, we use a memetic evolutionary algorithm.
(4) The experiment results demonstrate that our NAS-based x-
vector and Auto-Vector outperform state-of-the-art speaker ver-
ification methods in two datasets.

2. Proposed Methods
2.1. NAS-based x-vector

First, let us review the well-known x-vector network as shown
in Figure1(a). Suppose the input utterance contains T frames.
The first five layersL1 toL5 are frame-level information hidden
layers. These layers are connected with a time-delay architec-
ture with temporal context windows. The context window over
the first layer is set as a range from T − 2 to T + 2. The second
and third layers splice the output of the previous layer at time
steps {T-2, T, T+2} and {T-3, T, T+3}, respectively. The statis-
tical pooling layer builds utterance-level feature by calculating
mean and standard deviation over frame-level features. Note,
the seventh hidden layer L7 and the final softmax output layer
are used for training and discarded in the evaluation process.
The sixth layer L6 is used as the embedding of x-vector.

As NAS can learn deep network structures automatically,
we introduce the NAS conception into the x-vector network, as
shown in Figure1(b). For conventional x-vectors, the context
windows between frame-level hidden layers are set by experts.
Here, we let the number and the size of the context window
to be decided by an automatic-decided method. This method
is developed from hyper-network-based NAS, which stands out
among these efficient NAS approaches because they can signifi-
cantly reduce the tedious training process by sharing its param-
eters with all candidate networks. The key point is to specify
the search space of hyper-network, which contains all possible
candidate networks. As shown in Figure 1(b), we incorporate
various choice temporal context windows for the first five lay-
ers. Then, we use a memetic evolution search policy shown in
Section 2.3.2 to find the optimal candidate network with combi-
nation choices for temporal context windows. The statical pool-
ing, the sixth, and seventh layers are the same as conventional
x-vectors. However, the small search space limits the potential-
ity of NAS-based x-vector. To enable an ample search space,
we designed an Auto-Vector for speaker verification, as shown
in Section2.2.
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Figure 1: (a)The embedding DNN architecture of x-vector. (b)Our NAS-based x-vecotr. (c)Our Auto-Vector for speaker verification.

2.2. Auto-Vector

To automatically learn more promising nerual architectures for
text-independent speaker verification, we build a large-scale
hyper-network with repetitive architecture motifs. As shown in
Figure1(c), the framework includes three parts: input features,
architecture, and loss.

Input Features. MFCCs( Mel-frequency cepstral coeffi-
cients) is used to extract the frame-level acoustic feature vec-
tors from raw waveform signals. Then the frames are converted
into input acoustic features of 40-dimensional MFCCs with a
frame-length of 25ms. This gives spectrograms of size 40*300
for 3 seconds of speech.

Architecture. As shown in Figure 1(c), we build a hyper-
network containing the entire search space of architectures. The
architecture of hyper-network is stacked with identical structure
but different weights. Assume there are NB choice blocks, and
every block has Nop choice operations. Each choice block ap-
plies either one or two different operations out of Nop possible
options. Thus, there are, therefore Nop +

Nop∗(Nop−1)

2
possi-

ble combinations of operations that we can apply in each block.
In our experiment, the Nop is set as 6, so we have six possi-
ble operations: a max-pooling layer, an identity operation, and
convolution layers of size 1x1, 3x3, 5x5 and 7x7. The average
temporal pooling is implemented by applying a 2D adaptive av-
erage pooling several input planes. As the size of the search
space grows exponentially with the number of choice blocks
NB , this large-scale search space can enable more possibility
of promising networks.

Loss. In addition to softmax pre-training, we also use
distance-based loss function, such as triplet loss or generalized
end-to-end loss. Among various distance-based loss functions
[12, 11, 10], the generalized end-to-end loss function [11] per-
form best, because it not only learns to rank but also emphasizes
the hard examples. The details are shown in Section 2.4.

2.3. Evolutionary Algorithm Enhanced NAS

2.3.1. The Overall Training Procedure

The training procedure of NAS-based x-vector and Auto-Vector
consist of four steps: (1) Design a search space. (2) Train
the hyper-network. (3) Search the optional sub-networks with
their parameters inherited from the hyper-network. (4) Retrain
the best-accuracy candidate sub-network as a standalone model.
The first step have been shown in Section2.2. The second step
is to train hyper-network. The training goal is formulated as

θ∗(H) = argmin
θ

Ltrain(H, θ) (1)

here θ∗ means the weights of the hyper-network H and
Ltrain(·) denotes a loss function on training dataset.

The third step is to search for high-quality sub-networks,
with their parameters inherited from the hyper-network.The
high-quality sub-network search task is a black-box optimiza-
tion, which aims to find an approximate maximizer of an objec-
tive function f(x) using a given budget of N sub-network evalu-
ations. In can be formulated as

ã∗ ≈ a∗ = argmax
an

f(an ∼ H) (2)

note the sub-network an is sampling from the search space of
hyper-network H . For this optimization goal, we develop a
memetic algorithm based evolutionary policy, which is illus-
trated in Section2.3.2,

The last step is to retrain the obtained optimal sub-network
for the best performance. The model parameters learned by
minimizing the accumulative loss shown in the equation of

φ∗(ã∗) = argmin
φ

Ltrain(ã∗, φ) (3)

here φ∗ means the weights of the best-accuracy candidate sub-
model ã∗. And, Ltrain(·) denotes a loss function on training
dataset. The details of loss function is shown in Section2.4.
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2.3.2. Memetic Evolutionary Search Policy

Our search policy is based on the memetic algorithm. The
memetic algorithm is an augmentation of the genetic algo-
rithm. In other words, the memetic algorithm consists of the
genetic algorithm and one or more local search components.
The memetic algorithm integrates the local search method into
the genetic algorithm to reduce the likelihood of premature con-
vergence. Thereby, the promising child individuals are gener-
ated by recombination from and adaptation from outstanding
individuals.

The search process is shown in Algorithm 1. The inputs
include an empty population set Ω with size S, the generation
number G, and the well-trained hyper-network H . The key op-
erations of the search process are shown as follows. (1) For
mutation operations, the selected candidate choose one or two
different operations in its every choice block with probability
0.1 to produce a new candidate. Because cross-over operations
will result in local operation, we only make mutation opera-
tions. (2) The local search employs a hill-climbing algorithm
to discover high-quality sub-networks by greedily moving in the
direction of better-performing sub-networks. (3) The compete
operation uses an acceptance criterion to pick the better one.
(4) The fitness evaluation is calculating as fi = 1 − δi, where
δk means the equal error rate of i individual model. (5) The
selection operation is based on a tournament selection policy.
In the tournament selection policy, a candidate set is randomly
selected from the overall population set. Then, the best-fitness
individual is chosen from the candidate set rather than the over-
all population set. This policy can avoid zooming in on good
models too early and enable more search space to be explored.

Algorithm 1 Memetic evolutionary algorithm

1: Input: The population set Ω with size S
2: Input: The generation number G
3: Input: The well-trained hyper-network H
4: Output: A best-accuracy sub-network a
5: Initialize population set Ω
6: for i← 1...S do
7: ai ← uniform-sampling(H)
8: fi ← fitness evaluation(ai)
9: Ω = Ω + {ai, fi}

10: end for
11: for j ← 1...G do
12: äj ← mutation(aj)
13: āj ← local-search(äj)
14: aj ← compete(äj , āj)
15: fj ← fitness-evaluation(aj)
16: Ω = Ω + {aj , fj} # add the promising candidate
17: Ω = Ω− worst(Ω) # remove the worst candidate.
18: aj+1 ← tournament selection(Ω)
19: end for

2.4. Backend

The objective of typical cross-entropy loss is to learn to predict
directly a label given an input. Metric learning aims to predict
relative distance between inputs. In addition to softmax pre-
training, we also use distance-based loss function. Assuming
N speakers with each M utterance. The loss function L(·) is
shown as follows.

L(ea, ep, en) = 1− σ(d(ea, ep)) + max
1≤k≤N
k 6=j

σ(d(ea, e
k
n)) (4)

Table 1: Equal Error Rate Comparison(The Lower, The Better)

EER
(Dataset1)

EER
(Dataset2) Size

LSTM-GE2E[11] 6.2% 8.3% 4.6M
x-vector[27] 4.6% 6.5% 6.14M

NAS-based x-vector 4.3% 5.6% 6.32M
Auto-Vector 1.8% 3.6% 5.17 M

where d(ea, ep) means the scaled similarity score between the
anchor embedding ea and the positive embedding ep. Here, ea
and ep belongs to the same speaker. The negative embedding
ekn is the centroid embedding of the kth speakers, which should
be evaluated as ekn = 1

M

∑M
m=1 e

k
a(m), using M utterances for

the kth speaker. σ(·) means the sigmoid function. Here, the
scaled similarity score function d(ea, ep) is defined as

d(ea, ep) = w · cos(ea, ep) + b (5)

here, w and b are learnable parameters. cos(·) means the cosine
similarity function.

3. EXPERIMENT
3.1. Dataset Collection and Pre-Processing

We use two datasets for Evaluation. Dataset1 includes 300
speakers with 4527 utterances in total. The duration of which
mostly range from 3 to 7 seconds. We split the overall dataset
into a training dataset of 270 speakers and a test dataset of 30
speakers. 10 utterances are randomly chosen as enrollment ut-
terances for each speaker, and another 10 randomly chosen ut-
terances are used as evaluation samples.

Dataset2 includes 4000 speakers with 23573 utterances and
more than 12,600 hours of speech. This dataset is split into
two parts: a training dataset of 3960 speakers and an evaluation
dataset of 285 speakers. The evaluation partition consists of 285
speakers that do not overlap with the 3960 speakers for training
datasets.

The raw waveform audios with a 16KHz sampling rate are
converted into frames using a hamming window of width 25 ms
and step 10ms. MFCCs( Mel-frequency cepstral coefficients)
is used to extract the frame-level acoustic feature vectors from
raw waveform signals. Then the frames are converted into in-
put acoustic features of 40-dimensional MFCCs with a frame-
length of 25ms that are mean-normalized over a sliding window
of up to 3 seconds. This gives spectrograms of size 40*300 for
3 seconds of speech. An energy-based VAD is employed to
filter out non-speech frames from the utterances. There are N
speakers each with M utterances.

3.2. Overall Result

Table 1 shows the EER comparison of four models on Dataset1
and Dataset2. Our Auto-Vector performs better than LSTM and
x-vector. For two datasets, the equal error rate(EER) of our
Auto-Vector is much lower than LSTM and x-vector. This re-
sult proves that the neural architecture search network can find
a better model than the expert-designed hand-crafted models.
We use the same back-end(GE2E) for all evaluated systems to
eliminate the impacts of different back-end classifiers.

The configurations of two baseline networks are shown as
follows. The first baseline is a 3-layer LSTM Network[11]
with a projection of size 256. The embedding vector(d-vector)
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Table 2: The evaluation results of hyper-network and sub-
network on Dataset1. Here, F means the number of filters in
the first convolution layer and B means the number of choice
blocks. For sub-networks, we retrain top-10 sub-networks and
report the mean x and standard deviation y as x± y.

size
(M)

EER
(%)

cost
(GPUh)

HyperNet(F=16,B=24) 2.43 3.5 14.6
HyperNet(F=32,B=24) 6.08 2.7 21.7
HyperNet(F=64,B=24) 17.04 1.9 33.9
HyperNet(F=128,B=24) 46.82 1.4 50.7
HyperNet(B=12,F=32) 5.06 3.1 18.9
HyperNet(B=24,F=32) 6.08 2.7 21.7
HyperNet(B=36,F=32) 7.08 2.6 24.3
HyperNet(B=48,F=32) 8.05 2.2 26.2
SubNet(F=16,B=48) 0.8± 0.2 3.7± 0.3 -
SubNet(F=32,B=48) 2.1± 0.5 2.9± 0.2 -
SubNet(F=64,B=48) 6.1± 1.2 1.9± 0.1 -
SubNet(F=128,B=48) 15.2± 3.2 1.6± 0.1 -

size is the same as the LSTM projection size. There are 768
hidden nodes in the LSTM layer. The expected average moving
is used to get the embedding. The second baseline is x-vector
Network[27]. The first five layers L1 to L5 are frame-level
information hidden layers. While there are 512 nodes in each
of the first four layers L1 to L4, there are 1500 nodes in the
fifth layer L5. The statistical pooling layer builds utterance-
level feature by calculating mean and standard deviation over
frame-level features. Two utterance-level layersL6 andL7 each
have 512 nodes. The sixth layer L6 is used as embedding.

Our NAS-based x-vector is stacked with a repetitive con-
text block. Each block contains 4 choice temporal context win-
dows. As the search space is small, we use random search pol-
icy for NAS-based x-vector.

For Auto-Vector, the hyper-parameters of hyper-network
(number of blocks B and the number of filters F ) are analyzed
in Section 3.3. The embedding size is set as 512. To decouple
the correlation of sub-networks, we set the path dropout rate as
0.1. For the input, the batch size is set as 40 utterances from 8
speakers, each with 5 utterances. For training, we use is Adam
optimizer and a linear learning rate decay policy with a base
learning rate of 0.02. For the memetic evolutionary search, the
size of the population set is 100, and the number of generations
is 2000.

3.3. The Evaluation Details of Auto-Vector

Hyper-Network Training. First, we parameterize our models
based on F, the number of filters in the first convolution layer, as
shown in Table 2. When F = 16 and B=24, we obtain an average
EER of 3.5 with about 2.43 M parameters. with a double growth
of filter number, the growth of model size is multiplied by nearly
three times. Obviously, the equal error rate will decrease with
the increase of filters. As we use two reduction blocks in our
hyper-network model, the growth model size should be multi-
plied by four times. However, due to the existing of dense layer
in the end of NAS-based model, the growth model size is mul-
tiplied by nearly three times. The best model gets 1.4% EER
with around 46.82M parameters.

Then, we parameterize our models based on B, the number
of choice blocks. When B= 12 and F=32, we obtain an average

EER of 3.1% with about 5.06M parameters. The best model
gets 2.2% EER with around 8.05M parameters. With a double
boost of the block number, the model size only increases a lit-
tle because there is two dense layers in the tail of our model.
The weights of the dense layer dominate the model size, so the
model size increases at a low rate along with the double increase
of the number of filters.

(a) Search hyper-network with F=32 and B=24

(b) Search hyper-network with F=64 and B=48

Figure 2: The evaluation histogram of 2000 candidates sub-
networks with their parameters inherited from the hyper-
network

The Impact of Evolutionary Search. Compared to the
random selection algorithm, our hierarchical evolutionary al-
gorithm can generate more high-quality candidate models. The
equal error rate (EER) distribution of candidate models is shown
in Figure 2. While most of the candidate models searched out by
our evolutionary algorithm, have a lower equal error rate (EER)
than by random search. Besides, the best-accuracy model is
found out by our evolutionary algorithm rather than by a ran-
dom algorithm. This result further proves that our hierarchical
evolutionary algorithm can get more space to be explored to
generate more high-quality candidate models.

Sub-Network Re-Training. As shown in Table 2, we re-
train top-10 sub-networks and report the mean x and standard
deviation y as x ± y for sub-network training. We aim to find
the best-quality model whose model size is smaller than the x-
vector network. When F=64 and B=48, we can discover the
optimal model whose model size is 5.17M, and EER is 1.8%.

4. Conclusion
In this paper, we introduce the NAS conception into well-known
x-vector network. Enabling more search space to be explored,
we use an evolutionary algorithm enhanced neural architecture
search framework to search high-quality sub-networks. The ex-
periment shows that our system outperforms two state-of-the-
art end-to-end methods in a public dataset. Besides, our NAS
method can achieve a reduction of 36%-86% in equal error
compared with the state-of-the-art methods.
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